Metabolism and DNA binding of 2,6-dinitrotoluene in Fischer-344 rats and A/J mice. 1986

R Dixit, and H A Schut, and J E Klaunig, and G D Stoner

2,6-Dinitrotoluene (2,6-DNT) is a potent hepatocarcinogen in Fischer-344 rats, while its 2,4-isomer is believed to be noncarcinogenic. Neither 2,6-DNT nor 2,4-DNT is carcinogenic in the strain A mouse lung tumor bioassay. To explore the possible reasons for these differences in tumor responses, we have studied the in vitro metabolism and DNA binding of 2,6-DNT in cultured hepatocytes of the Fischer-344 rat and the A/J mouse, and have also investigated the in vivo DNA binding of 2,6-DNT and 2,4-DNT in these two species. In vitro metabolism of 2,6-DNT by rat and mouse hepatocytes was similar and resulted mainly in the formation of 2,6-dinitrobenzyl alcohol, either unconjugated or as a glucuronide (57.5 to 85.5% of the total per fraction), with smaller amounts of polar, acidic metabolites (8.4 to 38.7%) and minor amounts (1.2 to 5.3%) of 2-amino-6-nitrotoluene. Anaerobic metabolism of 2,6-DNT by an extract of rat or mouse cecal contents resulted mainly in the formation of 2-amino-6-nitrotoluene and 2-(N-acetylamino)-6-nitrotoluene, and minor amounts of 2,6-diaminotoluene. Ip administration of 2,6-DNT or 2,4-DNT (150 mg/kg each) to Fischer-344 rats resulted, after 24 hr, in covalent binding to DNA of the liver (131.1 to 259.9 pmol 2,6-DNT/mg DNA; 215.4 to 226.8 pmol 2,4-DNT/mg DNA), and lower binding to DNA of the lungs and the intestine (14.9 to 22.7 pmol 2,6-DNT/mg DNA; 45.0 to 75.0 pmol 2,4-DNT/mg DNA). Similar treatment of A/J mice resulted in lower binding in the liver (25.9 to 31.9 pmol 2,6-DNT/mg DNA; 42.6 to 58.9 pmol 2,4-DNT/mg DNA), no detectable binding of 2,6-DNT in extrahepatic tissues and low amounts of binding of 2,4-DNT to lung and intestinal DNA (9.7 to 39.0 pmol/mg DNA). In vitro binding of 2,6-DNT to DNA of cultured hepatocytes from both A/J mice and Fischer-344 rats required prior metabolism of 2,6-DNT by the respective extracts from cecal contents. DNA binding was non-detectable in hepatocytes incubated with 2,6-DNT only. It is concluded that binding of 2,6-DNT to liver DNA requires its prior reductive metabolism, probably by intestinal microorganisms, and that the higher binding of 2,6-DNT in the Fischer-344 rat than in the A/J mouse may, in part, be responsible for the high susceptibility of the Fischer-344 rat to 2,6-DNT carcinogenesis.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009578 Nitrobenzenes BENZENE derivatives carrying nitro group substituents.
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002432 Cecum The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX. Cecums
D004136 Dinitrobenzenes Benzene derivatives which are substituted with two nitro groups in the ortho, meta or para positions. Dinitrobenzene,Dinitrophenyl Compound,Dinitrophenyl Compounds,Dinitrotoluene,Dinitrotoluenes,Compound, Dinitrophenyl
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
January 1998, Environmental and molecular mutagenesis,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
January 1995, Environmental and molecular mutagenesis,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
June 1993, Toxicology,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
March 1995, Journal of toxicology and environmental health,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
July 1981, Toxicology and applied pharmacology,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
January 1981, Drug metabolism and disposition: the biological fate of chemicals,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
January 2019, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
May 1983, Toxicology and applied pharmacology,
R Dixit, and H A Schut, and J E Klaunig, and G D Stoner
October 1985, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!