Preservation of myocardial high-energy phosphates with vagal stimulation and hypothermic cardioplegia. 1986

J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp

We examined three methods of inducing hypothermic cardioplegic arrest and related each to preservation of high-energy phosphates. Levels of adenosine triphosphate (ATP) and creatine phosphate (CP) in baseline rat hearts were compared with levels found after vagal stimulation combined with cardioplegia containing 15 mEq of potassium chloride (KCl) per liter, cardioplegia with 15 mEq of KCl per liter alone, and cardioplegia with 30 mEq of KCl per liter alone. Vagal stimulation produced complete electromechanical arrest in a shorter time than either 15 or 30 mEq of KCl alone (p less than 0.001 for both cardioplegic solutions compared with vagal stimulation), with fewer ventricular beats after ischemia than cardioplegic solution containing 15 or 30 mEq of KCl (p less than 0.001 and less than 0.01, respectively). Levels of ATP and CP, although less than baseline levels (p less than 0.01 and less than 0.001, respectively), were greater with vagal stimulation than with either 15 or 30 mEq of KCl (p less than 0.001 and less than 0.05, respectively, for ATP and p less than 0.001 for both CP levels). Furthermore, when all groups were combined, ATP and CP levels were found to correlate negatively with arrest time (r = -0.851 and -0.788, respectively; both r values significant at p less than 0.01) and with the number of ventricular beats after ischemia (r = -0.927 and -0.851, respectively; both r values significant at p less than 0.01). We conclude that electromechanical work quantified as time to arrest after aortic cross-clamping and as number of ventricular beats after ischemia correlates negatively with ATP and CP levels.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006324 Heart Arrest, Induced A procedure to stop the contraction of MYOCARDIUM during HEART SURGERY. It is usually achieved with the use of chemicals (CARDIOPLEGIC SOLUTIONS) or cold temperature (such as chilled perfusate). Cardiac Arrest, Induced,Cardioplegia,Induced Cardiac Arrest,Induced Heart Arrest,Cardioplegias
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus

Related Publications

J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
January 1987, Scandinavian journal of thoracic and cardiovascular surgery,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
July 1978, Surgery,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
December 1981, The Journal of thoracic and cardiovascular surgery,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
January 1988, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
November 1991, The Journal of thoracic and cardiovascular surgery,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
December 1985, The Journal of thoracic and cardiovascular surgery,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
January 1989, Kokyu to junkan. Respiration & circulation,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
February 1977, The Annals of thoracic surgery,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
January 1970, Polish medical journal,
J M Levett, and J H Ip, and M H Kadowaki, and C A Stennis, and R B Karp
September 1982, The Annals of thoracic surgery,
Copied contents to your clipboard!