Biochemical and biophysical properties of cytochrome o of Azotobacter vinelandii. 1986

T Yang

Cytochrome o, solubilized from the membrane of Azotobacter vinelandii, has been purified to homogeneity as judged by ultracentrifugation and polyacrylamide gel electrophoresis. The detergent-containing cytochrome o is composed of one polypeptide chain with a molecular weight of 28 000-29 000, associated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme exists as a dimer by gel filtration analysis. The amino analysis which reveals the majority of residues are of hydrophobic nature. The cytochrome o oxidase contains protoheme as its prosthetic group and about 20-40% of phospholipids. The phospholipids are identified as phosphatidylethanolamine and phosphatidylglycerol by radioautographic analysis using 2-dimensional thin-layer chromatography. No copper or nonheme iron can be detected in the purified oxidase preparation by atomic absorption and chemical analyses. Oxidation-reduction titration shows this membrane-bound cytochrome o to be a low-potential component, and Em was determined to be -18 mV in the purified form and -30 mV in the membrane-bound form. Both forms bind CO with a reduced absorption peak at 559 and 557-558 nm in the native and solubilized forms, respectively. A high-spin (g = 6.0) form is assigned to the oxidized cytochrome o by electron paramagnetic resonance analysis, and KCN abolishes this high-spin signal. CO titration of purified cytochrome o in the anaerobic conditions shows the enzyme binds one CO per four protohemes and a dissociation constant is estimated to be 3.2 microM for CO. Cyanide reacts with purified cytochrome o in both oxidized and CO-bound forms, identified by specific spectral compounds absorbed at the Soret region. Cytochrome c, often co-purified with cytochrome c from the membrane, cannot serve as a reductant for cytochrome o in vitro, due to the apparent potential difference of about 300 mV. Upon separation, both cytochrome o and cytochrome c4 show a great tendency of aggregation. Furthermore, the oxidase activity (measured by tetramethyl-p-phenylenediamine oxidation rate) decreases as the cytochrome c concentration is decreased by ammonium sulfate fractionation. All these suggest the structural and functional complex nature of cytochrome c4 and cytochrome o in the membrane of A. vinelandii.

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D001395 Azotobacter A genus of gram-negative, aerobic bacteria found in soil and water. Its organisms occur singly, in pairs or irregular clumps, and sometimes in chains of varying lengths.
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities

Related Publications

T Yang
September 1980, European journal of biochemistry,
T Yang
September 1967, Biochimica et biophysica acta,
T Yang
April 1958, The Journal of biological chemistry,
T Yang
March 1993, Biochemistry and molecular biology international,
T Yang
December 1967, Journal of bacteriology,
T Yang
May 1953, Journal of bacteriology,
T Yang
October 1956, Biochimica et biophysica acta,
Copied contents to your clipboard!