DNA-binding domains of human plasma fibronectin. pH and calcium ion modulation of fibronectin binding to DNA and heparin. 1986

A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi

We have studied the binding of fibronectin and its thermolysin fragments to DNA and heparin. Elution of polypeptides bound to DNA-cellulose and heparin-Sepharose affinity chromatography columns was performed by NaCl linear gradients in buffers at different pH and in the presence and absence of calcium ions. The NaCl concentration required to elute fibronectin from both types of column increased as the pH decreased. Fibronectin was not retained on DNA-cellulose or heparin-Sepharose affinity chromatography columns using a buffer containing physiological concentrations of Ca2+, Mg2+ and NaCl, at pH 7.4. On the other hand at pH 6.4 in conditions of physiological ionic strength, fibronectin was retained by both columns, eluting from the DNA-cellulose at 280 mM NaCl and from the heparin-Sepharose column at 210 mM. Furthermore, we have studied the interaction of thermolysin-digested fibronectin both with DNA-cellulose and heparin-Sepharose using the above procedure. The results demonstrate that there are four distinct domains, which interact both with DNA and heparin. We also report here the modulation by pH and Ca2+ ions of the interaction with DNA and heparin of these different domains.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
May 1982, The Journal of biological chemistry,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
July 1982, Biochemical and biophysical research communications,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
June 1982, The Journal of biological chemistry,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
January 1986, European journal of biochemistry,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
January 1982, Archives of biochemistry and biophysics,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
October 1985, The Journal of biological chemistry,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
March 1992, Biochemical and biophysical research communications,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
March 1983, Biochemical and biophysical research communications,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
April 1989, Experimental cell research,
A Siri, and E Balza, and B Carnemolla, and P Castellani, and L Borsi, and L Zardi
December 1990, The Biochemical journal,
Copied contents to your clipboard!