Chemical modification of sheep-liver 6-phosphogluconate dehydrogenase by diethylpyrocarbonate. Evidence for an essential histidine residue. 1986

C M Topham, and K Dalziel

Sheep liver 6-phosphogluconate dehydrogenase is shown to be inactivated by diethylpyrocarbonate in a biphasic manner at pH 6.0, 25 degrees C. After allowing for the hydrolysis of the reagent, rate constants of 56 M-1 s-1 and 11.0 M-1 s-1 were estimated for the two processes. The complete reactivation of partially inactivated enzyme by neutral hydroxylamine, the elimination of the possibility that modification of cysteine or tyrosine residues are responsible for inactivation, and the magnitudes of the rate constants for inactivation relative to the experimentally determined value for the reaction of diethylpyrocarbonate with N alpha-acetylhistidine (2.2 M-1 s-1), all suggested that enzyme inactivation occurs solely by modification of histidine residues. Comparison of the experimental plot of residual fractional activity versus the number of modified histidine residues per subunit with simulated plots for three hypothetical models, each predicting biphasic kinetics, indicated that inactivation results from the modification of at most one essential histidine residue per subunit, although it appears that other (non-essential) histidines react independently. This histidine is thought to be His-242 and is present in the active site. Evidence in support of its role in catalysis is briefly discussed. Both 6-phosphogluconate and organic phosphate protect against inactivation, and a kinetic analysis of the protection indicated a dissociation constant of 2.1 X 10(-6) M for the enzyme--6-phosphogluconate complex. NADP+ also protected, but this might be due, at least in part, to a reduction in the effective concentration of diethylpyrocarbonate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010734 Phosphogluconate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43. 6-Phosphogluconate Dehydrogenase,6 Phosphogluconate Dehydrogenase,Dehydrogenase, 6-Phosphogluconate,Dehydrogenase, Phosphogluconate
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004047 Diethyl Pyrocarbonate Preservative for wines, soft drinks, and fruit juices and a gentle esterifying agent. Diethyl Dicarbonate,Diethyl Oxydiformate,Pyrocarbonic Acid Diethyl Ester,Diethylpyrocarbonate,Ethoxyformic Anhydride,Anhydride, Ethoxyformic,Dicarbonate, Diethyl,Oxydiformate, Diethyl,Pyrocarbonate, Diethyl
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D005942 Gluconates Derivatives of gluconic acid (the structural formula HOCH2(CHOH)4COOH), including its salts and esters. Copper Gluconate,Gluconate, Copper
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C M Topham, and K Dalziel
November 1984, Journal of biochemistry,
C M Topham, and K Dalziel
December 1996, Archives of biochemistry and biophysics,
C M Topham, and K Dalziel
October 1973, European journal of biochemistry,
C M Topham, and K Dalziel
April 1983, Biochemical and biophysical research communications,
Copied contents to your clipboard!