Uveitis induction in the rabbit by muramyl dipeptides. 1986

R V Waters, and T G Terrell, and G H Jones

Intraocular inflammation (uveitis) was produced in rabbits by intravenous or subcutaneous treatment with N-acetylmuramyl-L-alanyl-D-isoglutamine and several of its synthetic analogs at doses of greater than or equal to 0.2 mg/kg in saline. A dose-dependent increase in permeability of the ocular blood-aqueous barrier as measured by leakage of protein or fluoresceinated dextran from the serum into the eye was observed from 2 to 14 h after glycopeptide treatment. Peak response occurred at approximately 3 h postdose. The lowest dose found to produce maximal vascular leakage for the most active glycopeptide analogs was 1 mg/kg. The adjuvant-inactive L-L stereoisomer of N-acetylmuramyl-L-alanyl-D-isoglutamine was inactive, even at doses as high as 10 mg/kg. Analogs of N-acetylmuramyl-L-alanyl-D-isoglutamine which were homologous in the lactyl side chain were found to cause less uveitis. Chronic biweekly intravenous treatment of rabbits for 1 month with either N-acetyl-L-alpha-aminobutyryl-D-isoglutamine or its lipophilic 6-O-stearoyl derivative at 1 mg/kg, but not with murabutide, resulted in leukocytic inflammatory lesions unique to the uveal tract of the eye. The uveitis was potentially reversible and occurred with decreased severity as long as 2 months after cessation of chronic treatment. Vascular leakage but not cellular infiltrate in the choroid could be modulated by pharmacologic means. Pyrogenicity but not adjuvanticity correlated with ability of glycopeptides to induce vascular leakage. Several adjuvant-active muramyl dipeptide analogs with minimal ability to cause acute vascular leakage or chronic inflammation in the rabbit eye have been identified.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000119 Acetylmuramyl-Alanyl-Isoglutamine Peptidoglycan immunoadjuvant originally isolated from bacterial cell wall fragments; also acts as pyrogen and may cause arthritis; stimulates both humoral and cellular immunity. Mur-NAc-L-Ala-D-isoGln,Muramyl Dipeptide,Acetylmuramyl Alanyl Isoglutamine,N-Acetyl-Muramyl-L-Alanyl-D-Glutamic-alpha-Amide,N-Acetylmuramyl-L-Alanyl-D-Isoglutamine,Alanyl Isoglutamine, Acetylmuramyl,Dipeptide, Muramyl,Isoglutamine, Acetylmuramyl Alanyl,Mur NAc L Ala D isoGln,N Acetyl Muramyl L Alanyl D Glutamic alpha Amide,N Acetylmuramyl L Alanyl D Isoglutamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R V Waters, and T G Terrell, and G H Jones
March 2005, Journal of peptide science : an official publication of the European Peptide Society,
R V Waters, and T G Terrell, and G H Jones
February 1992, Research in immunology,
R V Waters, and T G Terrell, and G H Jones
May 2024, European journal of medicinal chemistry,
R V Waters, and T G Terrell, and G H Jones
October 2010, Bioorganic & medicinal chemistry letters,
R V Waters, and T G Terrell, and G H Jones
November 1987, Nihon saikingaku zasshi. Japanese journal of bacteriology,
R V Waters, and T G Terrell, and G H Jones
January 1985, Bollettino dell'Istituto sieroterapico milanese,
R V Waters, and T G Terrell, and G H Jones
January 1983, Advances in experimental medicine and biology,
R V Waters, and T G Terrell, and G H Jones
February 2005, International immunopharmacology,
R V Waters, and T G Terrell, and G H Jones
September 2016, Infection and immunity,
R V Waters, and T G Terrell, and G H Jones
July 1984, Archives of ophthalmology (Chicago, Ill. : 1960),
Copied contents to your clipboard!