Epoxidation of androsta-5,16-dien-3 beta-ol by hepatic microsomal lipid peroxidation. 1986

T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka

Male rat liver microsomes oxidized androsta-5,16-dien-3 beta-ol (delta 16-ANDO) to delta 16-ANDO-5,6 alpha-, -5,6 beta-, -16,17 alpha-, and -16,17 beta-epoxides and delta 16-ANDO-5 alpha,6 beta-, -16 alpha,17 beta-, and -16 beta,17 alpha-glycols in the presence of an NADPH-generating system and the microsomal lipid peroxidation accelerator, Fe2+-ADP. The hepatic microsomes hydrolyzed all the delta 16-ANDO epoxides to the glycols. delta 16-ANDO-5 alpha,6 beta-glycol was the sole metabolite from both 5,6 alpha- and 5,6 beta-epoxides. Microsomal epoxide hydrolase also hydrolyzed delta 16-ANDO-16,17 alpha-epoxide specifically to the 16 beta,17 alpha-glycol and the isomeric 16,17 beta-epoxide to the 16 alpha,17 beta- and 16 beta,17 alpha-glycols approximately in the equal ratio. The delta 5-epoxidation of delta 16-ANDO by microsomes occurred only under the conditions that lipid peroxidation took place. Direct evidence was obtained for the participation of microsomal lipid hydroperoxides in the epoxidation of delta 16-ANDO by using photochemically prepared hydroperoxides of phospholipids separated from the hepatic microsomes. The hydroperoxides generated active oxygens, tentatively assigned as alk(ylper)oxy radicals, by the action of ferrous ion and epoxidized delta 16-ANDO to afford the 5,6- and 16,17-epoxides. The Fe2+-ADP-mediated epoxidation of delta 16-ANDO by the phospholipid hydroperoxides occurred preferentially at delta 5 to delta 16 and afforded the 5,6 beta-epoxide in a higher ratio than the 5,6 alpha-epoxide, similar to the Fe2+-ADP-mediated microsomal epoxidation, while the alpha-epoxide was preferentially formed to the beta-epoxide for delta 16 in the epoxidation by both systems.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids

Related Publications

T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
October 1979, Biochemical Society transactions,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
April 2008, Acta crystallographica. Section C, Crystal structure communications,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
December 1976, Biochimica et biophysica acta,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
January 1952, Il Farmaco, scienza e tecnica,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
March 1971, The Biochemical journal,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
October 1987, The Journal of clinical endocrinology and metabolism,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
May 1975, Steroids,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
September 1982, Biochemical and biophysical research communications,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
June 1987, Steroids,
T Watabe, and K Kobayashi, and Y Saitoh, and T Komatsu, and N Ozawa, and A Tsubaki, and K Endoh, and A Hiratsuka
June 2015, Acta crystallographica. Section E, Crystallographic communications,
Copied contents to your clipboard!