Effect of amino acid levels on matrix vesicle formation by epiphyseal growth plate chondrocytes in primary culture. 1986

Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier

The effect of varying the amino acid concentrations of the culture medium on matrix vesicle formation was studied in primary cultures of chicken epiphyseal growth plate chondrocytes grown in Dulbecco's modified Eagle's medium (DME) supplemented with 10% fetal bovine serum (FBS). Decreasing the levels of free amino acids in the culture medium to levels of one-half, one quarter, and one eighth of the values normally present in DME caused a progressive decline in matrix vesicle (MV) formation. Increasing the level in the culture medium of those amino acids that are enriched in extracellular fluid (ECF) of growth plate cartilage significantly increased formation of matrix vesicles (MV), as assayed by the alkaline phosphatase (AP) activities present in high-speed sediments from spent culture media. However, adjusting the levels of all amino acids to match those of the ECF produced the greatest stimulation of MV formation. Of the amino acids that are notably enriched in ECF, glutamate (GLU), alanine (ALA), serine (SER), asparagine (ASN), and taurine (TAU) individually enhanced MV production, whereas proline (PRO), glycine (GLY), and aspartate (ASP) had essentially no effect. The simple combination of ECF levels of ALA and GLU resulted in a stimulation of MV formation equal to that observed when the eight aforementioned amino acids were elevated to ECF levels. Other combinations of ASP and GLY, or of TAU, SER, and ASN showed some stimulation, but at a lower level. Increasing the amino acid concentrations, alone or in combination, also increased the levels of cellular AP, and to a lesser extent cellular protein. While increases in cellular AP were generally correlated with increased formation of AP-rich MV, this was not uniformly true. These results indicate that in addition to hormones and growth factors, nutritional factors such as the levels of amino acids are also critical for normal phenotypic expression, growth, and matrix formation by epiphyseal chondrocytes.

UI MeSH Term Description Entries
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004838 Epiphyses The head of a long bone that is separated from the shaft by the epiphyseal plate until bone growth stops. At that time, the plate disappears and the head and shaft are united. Epiphysis
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
July 1986, Biochemical pharmacology,
Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
September 2004, Calcified tissue international,
Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
May 1986, Endocrinology,
Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
February 2013, The Journal of toxicological sciences,
Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
November 1993, General and comparative endocrinology,
Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
January 1983, Metabolic bone disease & related research,
Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
October 1995, Molecular and cellular endocrinology,
Y Ishikawa, and J E Chin, and E M Schalk, and R E Wuthier
January 1983, Connective tissue research,
Copied contents to your clipboard!