Premalignant alterations in the lipid composition and fluidity of colonic brush border membranes of rats administered 1,2 dimethylhydrazine. 1986

T A Brasitus, and P K Dudeja, and R Dahiya

Dimethylhydrazine (DMH) is a potent procarcinogen with selectivity for the colon. To determine whether alterations in the lipid composition and fluidity of rat colonic brush border membranes existed before the development of DMH-induced colon cancer, rats were injected s.c. with this agent (20 mg/kg body weight per wk) or diluent for 5, 10, and 15 wk. Animals were killed at these time periods and brush border membranes were prepared from proximal and distal colonocytes of each group. The "static" and "dynamic" components of fluidity of each membrane were then assessed, by steady-state fluorescence polarization techniques using limiting hindered fluorescence anisotropy and order parameter values of the fluorophore 1,6 diphenyl-1,3,5-hexatriene (DPH) and fluorescence anisotropy values of DL-2-(9-anthroyl) stearic acid and DL-12-(9-anthroyl) stearic acid, respectively. Membrane lipids were extracted and analyzed by thin-layer chromatography and gas-liquid chromatography. Phospholipid methylation activity in these membranes was also measured using S-adenosyl-L-methionine as the methyl donor. The results of these studies demonstrate that: the lipid composition and both components of fluidity of proximal DMH-treated and control membranes and their liposomes were similar at all time periods examined; at 5, 10, and 15 wk the "dynamic component of fluidity" of distal DMH-treated membranes and their liposomes was found to be higher, similar, and lower, respectively, than their control counterparts; the "static component of fluidity" of distal DMH-treated membranes and their liposomes, however, was similar to control preparations at all three time periods; and alterations in the lipid composition and phospholipid methylation activities appeared to be responsible for these differences in the "dynamic component of fluidity" at these various time periods.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008763 Methylhydrazines Hydrazines substituted by one or more methyl groups in any position.
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental

Related Publications

T A Brasitus, and P K Dudeja, and R Dahiya
March 1988, Biochimica et biophysica acta,
T A Brasitus, and P K Dudeja, and R Dahiya
September 1984, The American journal of physiology,
T A Brasitus, and P K Dudeja, and R Dahiya
January 1978, Digestion,
T A Brasitus, and P K Dudeja, and R Dahiya
July 1988, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T A Brasitus, and P K Dudeja, and R Dahiya
November 1987, Biochimica et biophysica acta,
T A Brasitus, and P K Dudeja, and R Dahiya
October 1995, Indian journal of biochemistry & biophysics,
T A Brasitus, and P K Dudeja, and R Dahiya
January 2005, Molecular and cellular biochemistry,
T A Brasitus, and P K Dudeja, and R Dahiya
April 1980, Diseases of the colon and rectum,
T A Brasitus, and P K Dudeja, and R Dahiya
September 1996, Biochimica et biophysica acta,
T A Brasitus, and P K Dudeja, and R Dahiya
June 1986, Biochimica et biophysica acta,
Copied contents to your clipboard!