An ultrastructural study of interplexiform cell synapses in the human retina. 1986

K A Linberg, and S K Fisher

Using serial sections and electron microscopy, we have found several morphological types of synapses within the outer plexiform layer (OPL) of the human retina. The most conspicuous of these is described in this paper. They have a unique morphology and form synapses with rod and cone bipolar cells in the OPL and onto bipolar and amacrine cell bodies in the inner nuclear layer (INL). Because they occur in processes that extend across the INL, we believe these synapses are made by interplexiform cells (IPCs). These same processes also contact cone pedicles with specialized cell junctions like those made between cones and flat bipolars. These junctions have densification of both cell membranes and widening of the extracellular cleft, but no accumulation of synaptic vesicles. Similar-appearing processes in the inner plexiform layer are thought to belong to IPCs but their contacts were less completely identified. Possible circuitry for these IPCs is described and the possibility that there are different classes of IPCs in the human retina is discussed. The OPL forms in the posterior retina during the tenth fetal week. Our observations suggest that different types of synapses including those of the IPCs are present in this layer from the time of its first appearance.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

K A Linberg, and S K Fisher
April 1978, Proceedings of the Royal Society of London. Series B, Biological sciences,
K A Linberg, and S K Fisher
March 1983, Anatomia, histologia, embryologia,
K A Linberg, and S K Fisher
January 1984, Nature,
K A Linberg, and S K Fisher
May 1979, Investigative ophthalmology & visual science,
K A Linberg, and S K Fisher
July 1977, Proceedings of the Royal Society of London. Series B, Biological sciences,
K A Linberg, and S K Fisher
July 1990, The Journal of comparative neurology,
K A Linberg, and S K Fisher
July 2009, The European journal of neuroscience,
K A Linberg, and S K Fisher
July 1993, The Journal of comparative neurology,
K A Linberg, and S K Fisher
April 1977, Journal of neurocytology,
K A Linberg, and S K Fisher
July 1987, Experimental eye research,
Copied contents to your clipboard!