Morphology and synaptic connections of myelinated primary axons in the ventrolateral region of rat trigeminal nucleus oralis. 1986

W M Falls

Neurons in the ventrolateral (VL) subdivision of rat trigeminal nucleus oralis (Vo) have most of their dendritic arbors confined within this region. This study examines the morphology and synaptic connections of a population of myelinated primary trigeminal axons that arborize within VL and are in a position to provide input directly to VL neurons. Primary axons were visualized for light and electron microscopic analysis by injecting 30% horseradish peroxidase (HRP) in 2% dimethylsulfoxide (DMSO) into the sensory root of the trigeminal nerve and allowing 24-36 hours for the anterograde transport of HRP into the terminal axonal arbors. This population is characterized by its cone-shaped terminal arbors, which generate many axonal endings (2-8 micron in diameter) along unmyelinated terminal strands. These arbors arise from collaterals emanating from thinly myelinated (2-5 micron in diameter) parent branches descending in the spinal V tract, which, on the basis of their size, are considered to be small myelinated (A sigma) primary trigeminal axons. HRP-labeled P endings belonging to this population of primary axons are scalloped, filled with spherical to ovoid (40-70 nm in diameter) synaptic vesicles, and lie centrally in glomeruli where they make asymmetrical axodendritic synapses on dendritic shafts and spine heads. It is at these synapses that this population of primary trigeminal axons is probably transferring its input directly to the dendritic arbors of VL neurons. The dendritic shafts and spine heads also receive symmetrical to intermediate axodendritic synapses from endings containing flattened (70 X 29 nm) synaptic vesicles. These terminals also establish axo-axonic synapses on the P ending. Other synaptic components found less often in the glomeruli include small terminals containing oval (14-23 nm) synaptic vesicles that establish symmetrical to intermediate synapses on the P ending, boutons containing pleomorphic (35-80 nm) synaptic vesicles that form symmetrical to intermediate synapses on the P ending as well as on dendritic shafts, and small peripheral endings containing round (20-40 nm) synaptic vesicles that establish asymmetrical synapses on dendritic shafts.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014278 Trigeminal Nuclei Nuclei of the trigeminal nerve situated in the brain stem. They include the nucleus of the spinal trigeminal tract (TRIGEMINAL NUCLEUS, SPINAL), the principal sensory nucleus, the mesencephalic nucleus, and the motor nucleus. Trigeminal Nuclear Complex,Nuclear Complex, Trigeminal,Nuclear Complices, Trigeminal,Nuclei, Trigeminal,Nucleus, Trigeminal,Trigeminal Nuclear Complices,Trigeminal Nucleus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

W M Falls
September 1987, The Journal of comparative neurology,
Copied contents to your clipboard!