Effects of sustained swimming on rainbow trout muscle structure, blood oxygen transport, and lactate dehydrogenase isozymes: evidence for increased aerobic capacity of white muscle. 1986

P S Davie, and R M Wells, and V Tetens

Groups of rainbow trout (Salmo gairdneri, Richardson) were continuously swum at 20 cm s-1 (1.0 body lengths s-1) for 0, 3, 30, and 200 days. No significant changes in fish condition factor, combined red and white muscle mass, muscle fibre size or fibre size distribution were observed. After 200 days of swimming there was a significant 2.2 fold increase in red muscle mass. Number of capillaries per red muscle fibre increased significantly in each group by a maximum of 27% after 200 days exercise. Number of capillaries per white muscle fibre increased significantly by 95% after 200 days exercise. Blood lactate, haemoglobin (Hb) concentration haematocrit, erythrocyte adenosine triphosphate, and whole blood oxygen affinity P50 were unchanged by swimming. After 30 and 200 days swimming there was a shift in expression of white muscle lactate dehydrogenase (LDH) isozymes from LDH-A to LDH-B. Within the duplicated LDH-B isozyme complex, there was a shift in expression from LDH-B to LDH-B' subunits. These results suggest that sustained swimming at 1(-1) bl s-1 increased the aerobic capacity of red and particularly white (fast) muscle of rainbow trout but did not alter the gas transport characteristics of the blood.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D000332 Aerobiosis Life or metabolic reactions occurring in an environment containing oxygen. Aerobioses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P S Davie, and R M Wells, and V Tetens
January 1999, The Journal of experimental biology,
P S Davie, and R M Wells, and V Tetens
May 1997, The American journal of physiology,
P S Davie, and R M Wells, and V Tetens
January 1999, The Journal of experimental biology,
P S Davie, and R M Wells, and V Tetens
November 1996, The American journal of physiology,
P S Davie, and R M Wells, and V Tetens
November 2013, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
P S Davie, and R M Wells, and V Tetens
December 1995, Respiration physiology,
P S Davie, and R M Wells, and V Tetens
August 1963, Proceedings of the National Academy of Sciences of the United States of America,
P S Davie, and R M Wells, and V Tetens
July 1991, The Journal of experimental biology,
P S Davie, and R M Wells, and V Tetens
October 2014, American journal of physiology. Regulatory, integrative and comparative physiology,
P S Davie, and R M Wells, and V Tetens
November 1995, The American journal of physiology,
Copied contents to your clipboard!