Ascending pathways in the spinal cord involved in triggering of diffuse noxious inhibitory controls in the rat. 1986

L Villanueva, and M Peschanski, and B Calvino, and D Le Bars

Recordings were made from convergent neurons in trigeminal nucleus caudalis of the rat. These neurons were activated by both innocuous and noxious mechanical stimuli applied to their excitatory receptive fields located on the ipsilateral part of the muzzle. Transcutaneous application of suprathreshold 2-ms square-wave electrical stimuli to the center of the excitatory field resulted in responses to C-fiber activation being observed (mean latencies 63.6 +/- 5.5 ms). This type of response was inhibited by applying noxious conditioning stimuli to heterotopic body areas, namely immersing either the left or right hindpaw in a 52 degrees C water bath. A virtually total block of the response was observed during the application of the noxious conditioning stimulus, and this was followed by long-lasting poststimulus effects. Such inhibitory processes have been termed diffuse noxious inhibitory controls (DNIC) (39, 40). The effects on these inhibitions of various transverse lesions of the cervical spinal cord were investigated in acute experiments; tests were performed before and at least 30 min after the spinal section. While the unconditioned C-fiber responses were unaltered, the inhibitory processes could be impaired by the cervical lesions, although these effects depended on the part of the cervical cord destroyed and the side of application of the conditioning stimulus. Lesioning dorsal, dorsolateral, and ventromedial parts of the cervical cord was found not to affect inhibitory processes triggered from either hindpaw. The overlapping of the regions of these ineffective lesions revealed that two remaining regions were not destroyed, that is, the left and right ventrolateral quadrants. In experiments where the left anterolateral quadrant was affected by the surgical procedure the inhibition triggered from the right hindpaw was strongly reduced, whereas that elicited by left hindpaw stimulation was not diminished. The loss of inhibitory effects was characterized by a complete disappearance of poststimulus effects, whereas inhibition observed during the application of the noxious thermal conditioning stimulus was only partially, albeit very significantly, blocked. To ascertain further the mainly crossed nature of the pathways responsible for the heterotopic inhibitory processes, the effects of lumbar commissurotomy were investigated. Again the unconditioned C-fiber responses were unaltered by this procedure, whereas the inhibitory processes, whether triggered from the left or right hindpaw, were strongly depressed in all the experiments.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
January 1990, Neuro-Chirurgie,
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
January 1985, Sheng li ke xue jin zhan [Progress in physiology],
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
December 1995, European journal of pharmacology,
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
December 1990, Journal of neurophysiology,
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
April 1993, The Journal of physiology,
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
January 1995, Biological research,
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
June 2014, Experimental neurology,
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
August 2008, The journal of pain,
L Villanueva, and M Peschanski, and B Calvino, and D Le Bars
January 1981, Brain research,
Copied contents to your clipboard!