The somatosensory thalamus of the raccoon: properties of single neurons responsive to light mechanical stimulation of the forepaw. 1986

S Warren, and A M Kelahan, and B H Pubols

These studies were undertaken to characterize the discharge properties of single neurons of the raccoon thalamic ventrobasal complex (VB) that respond to light mechanical stimulation of the glabrous surfaces of the forepaw. Microelectrodes were used to record the extracellular activity of 146 cells in anesthetized raccoons, and all neurons were histologically verified as falling within or along the boundaries of VB. Sixty-one neurons were tested for activation by electrical stimulaton of primarily somatosensory cortex. Of these, 88% were antidromically activated, 5% were synaptically activated, and the remaining 7% were unresponsive. Out of the total sample of 146 neurons, 136 had peripheral receptive fields (RFs) that were restricted to glabrous skin and revealed properties of modality and place-specificity predictable through knowledge of properties of primary mechanoreceptive afferents. Rapidly adapting (RA) neurons accounted for 77% of this modality-place-specific sample, while 19% were slowly adapting (SA), and 4% revealed properties indicative of input from Pacinian afferents (Pc). Absolute displacement thresholds were comparable for RA and SA neurons (range = 6-415 micron). Palmar RF areas (range = 3.3-328 mm2) were significantly larger than digital RF areas (range = 0.5-98.2 mm2). As defined by exponents (b) of power functions relating instantaneous discharge frequency to displacement ramp velocity, SA neurons formed a single, homogeneous group (range of values of b = 0.633-0.720). However, RA neurons fell into three distinct groups: those showing relatively steep functions (b = 0.559-0.938), those showing relatively flat functions (b = 0.146-0.334), and those showing discontinuous, or step, functions. A small number of neurons (7% of total sample) revealed "complex" properties, not predictable from knowledge of properties of primary afferents. These included five neurons whose RFs encompassed both glabrous and hairy skin, and several linear orientation, or "tactile edge," detectors. The present results, in conjunction with those of earlier studies of the raccoon dorsal column-medial lemniscal system, lead to the conclusion that different types of information transformation are emphasized at different levels of the system. Intramodality convergences (increases in RF area) occur primarily within the cuneothalamic relay, while changes in the coding of quantitative information are primarily a function of VB neurons. The appearance of linear orientation detectors--a type of tactile "feature detector"--indicates that the synthesis of information regarding complex spatial properties of stimuli has its beginnings within the somatosensory thalamus.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011821 Raccoons Carnivores of the genus Procyon of the family PROCYONIDAE. Two subgenera and seven species are currently recognized. They range from southern Canada to Panama and are found in several of the Caribbean Islands. Procyon,Procyons,Raccoon
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005121 Extremities The farthest or outermost projections of the body, such as the HAND and FOOT. Limbs,Extremity,Limb
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Warren, and A M Kelahan, and B H Pubols
January 1989, Journal of neurophysiology,
S Warren, and A M Kelahan, and B H Pubols
February 1992, Experimental neurology,
S Warren, and A M Kelahan, and B H Pubols
March 1983, Journal of neurophysiology,
S Warren, and A M Kelahan, and B H Pubols
June 1990, Brain research bulletin,
S Warren, and A M Kelahan, and B H Pubols
November 1997, The Journal of comparative neurology,
S Warren, and A M Kelahan, and B H Pubols
February 1993, Journal of neurophysiology,
S Warren, and A M Kelahan, and B H Pubols
September 1977, Brain research,
S Warren, and A M Kelahan, and B H Pubols
June 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Warren, and A M Kelahan, and B H Pubols
June 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!