Rat skeletal muscle phosphorylase kinase: turnover and control of isozyme levels in culture. 1986

W J Salsgiver, and J C Lawrence

The expression of phosphorylase kinase was investigated in rat skeletal muscle cells developing in vitro. The enzyme was immunoprecipitated from cells cultured in the presence of [35S]methionine, and the 35S-labeled alpha-, alpha'-, and beta-subunits of the kinase were resolved by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Fusion of myoblasts into myotubes was associated with marked increases in the amounts of kinase activity and the three 35S-labeled subunits. In 2-wk-old myotubes, the net amount of alpha'-subunit represented less than 20% of the total alpha-subunits (alpha + alpha'); however, alpha'-subunits appeared to be synthesized at least as rapidly as alpha-subunits. That alpha'-subunits were degraded more rapidly was confirmed by pulse-chase experiments, which also indicated that alpha'-subunits were not formed by proteolytic processing of the larger alpha-subunit. Inhibition of the spontaneous contractile activity of the myotubes with lidocaine markedly increased both phosphorylase kinase activity and the amounts of the 35S-labeled subunits. The divalent cation ionophore, A23187, decreased the alpha-subunits by 60%, but did not change levels of the alpha'-subunits. Taken together, the present results indicate that rat myotubes synthesize the two isozymes of phosphorylase kinase, and that levels of both are controlled by differentiation and muscle activity.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010764 Phosphorylase Kinase An enzyme that catalyzes the conversion of ATP and PHOSPHORYLASE B to ADP and PHOSPHORYLASE A. Glycogen Phosphorylase Kinase,Phosphorylase b Kinase,Kinase, Glycogen Phosphorylase,Kinase, Phosphorylase,Kinase, Phosphorylase b,Phosphorylase Kinase, Glycogen,b Kinase, Phosphorylase
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular

Related Publications

W J Salsgiver, and J C Lawrence
December 1982, The Journal of biological chemistry,
W J Salsgiver, and J C Lawrence
January 1986, Biomedica biochimica acta,
W J Salsgiver, and J C Lawrence
January 1968, Advances in enzyme regulation,
W J Salsgiver, and J C Lawrence
April 1995, FEBS letters,
W J Salsgiver, and J C Lawrence
January 1983, Methods in enzymology,
W J Salsgiver, and J C Lawrence
October 1978, The Biochemical journal,
W J Salsgiver, and J C Lawrence
February 1975, FEBS letters,
Copied contents to your clipboard!