Effects of pH on tubulin-nucleotide interactions. 1986

E Hamel, and J K Batra, and A B Huang, and C M Lin

Significant GTP-independent, temperature-dependent turbidity development occurs with purified tubulin stored in the absence of unbound nucleotide, and this can be minimized with a higher reaction pH. Since microtubule assembly is optimal at lower pH values, we examined pH effects on tubulin-nucleotide interactions. While the lowest concentration of GTP required for assembly changed little, GDP was more inhibitory at higher pH values. The amounts of exogenous GTP bound to tubulin at all pH values were similar, but the amounts of exogenous GDP bound and endogenous GDP (i.e., GDP originally bound in the exchangeable site) retained by tubulin rose as reaction pH increased. Endogenous GDP was more efficiently displaced by exogenous GTP than GDP at all pH values, but displacement by GTP was 10-15% greater at pH 6 than at pH 7. Dissociation constants for GDP and GTP were about 1.0 microM at pH 6 and 0.02 microM at pH 7. A small increase in the affinity of GDP relative to that of GTP occurs at pH 7 as compared to pH 6, together with a 50-fold absolute increase in the affinity of both nucleotides for tubulin at pH 7. The time courses of microtubule assembly and GTP hydrolysis were compared at pH 6 and pH 7. At pH 6, the two reactions were simultaneous in onset and initially stoichiometric. At pH 7, although the reactions began simultaneously, hydrolysis seemed to lag substantially behind assembly. Unhydrolyzed radiolabeled GTP was not incorporated into microtubules, however, indicating that GTP hydrolysis is actually closely coupled to assembly. The apparent lag in hydrolysis probably results from a methodological artifact rather than incorporation of GTP into the microtubule with delayed hydrolysis.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009391 Nephelometry and Turbidimetry Chemical analysis based on the phenomenon whereby light, passing through a medium with dispersed particles of a different refractive index from that of the medium, is attenuated in intensity by scattering. In turbidimetry, the intensity of light transmitted through the medium, the unscattered light, is measured. In nephelometry, the intensity of the scattered light is measured, usually, but not necessarily, at right angles to the incident light beam. Turbidimetry,Nephelometry,Turbidimetry and Nephelometry
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

E Hamel, and J K Batra, and A B Huang, and C M Lin
November 1991, Pharmacology & therapeutics,
E Hamel, and J K Batra, and A B Huang, and C M Lin
November 1985, Biochimica et biophysica acta,
E Hamel, and J K Batra, and A B Huang, and C M Lin
October 1978, Biochemical and biophysical research communications,
E Hamel, and J K Batra, and A B Huang, and C M Lin
September 1976, Biochemistry,
E Hamel, and J K Batra, and A B Huang, and C M Lin
September 1986, Archives of biochemistry and biophysics,
E Hamel, and J K Batra, and A B Huang, and C M Lin
August 2004, Biochemistry,
E Hamel, and J K Batra, and A B Huang, and C M Lin
August 1993, Biochemical and biophysical research communications,
E Hamel, and J K Batra, and A B Huang, and C M Lin
March 1980, The Journal of biological chemistry,
E Hamel, and J K Batra, and A B Huang, and C M Lin
January 1986, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!