Action of spermine on phosphate transport in liver mitochondria. 1986

A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi

Spermine, at concentrations similar to those normally present in the cytosol of liver cells, facilitates the transport of phosphate into mitochondria and thus its accumulation within the matrix space. Both mersalyl and N-ethylmaleimide (NEM) inhibit phosphate influx either in the absence or in the presence of spermine. These inhibitors also inhibit, but only partially, the efflux from mitochondria of phosphate generated within the matrix space by the hydrolysis of ATP induced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or the valinomycin-K+ system. The inhibition of phosphate efflux by both mersalyl and NEM is almost completely removed, unlike that of phosphate influx, by spermine. The possibility that spermine may induce phosphate efflux by damaging mitochondrial membranes and consequently inducing an unspecific permeability to phosphate is excluded by the full restoration of transmembrane potential once FCCP has been removed by albumin. Since spermine does not react with either thiol groups or thiol group reagents, the simplest explanation of the reported results is that the pathway of phosphate efflux is distinct from that of phosphate influx.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008634 Mersalyl A toxic thiol mercury salt formerly used as a diuretic. It inhibits various biochemical functions, especially in mitochondria, and is used to study those functions. Mercuramide,Mercusal,Mersalin,Mersalyl Acid,Salyrgan,Acid, Mersalyl
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013096 Spermine A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.

Related Publications

A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
December 1988, The Journal of biological chemistry,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
August 1992, Biochimica et biophysica acta,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
December 1990, Cardioscience,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
February 2012, Amino acids,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
March 1971, Biochimica et biophysica acta,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
October 1973, FEBS letters,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
January 2000, Biochemistry,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
January 1970, FEBS letters,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
January 1988, Advances in experimental medicine and biology,
A Toninello, and F Di Lisa, and D Siliprandi, and N Siliprandi
February 1978, European journal of biochemistry,
Copied contents to your clipboard!