Stimulation of mouse liver glutathione S-transferase activity in propylthiouracil-treated mice in vivo by tri-iodothyronine. 1986

M T Williams, and H Carrington, and A Herrera

Female C57Bl/6J mice were given drinking water containing 0.05% propylthiouracil to induce a hypothyroid condition. Mitochondrial glycerol-3-phosphate dehydrogenase activity, used as an index of hypothyroidism, was 57.1 +/- 4.5 and 29.4 +/- 3.8 nmol/min per mg of protein for control and propylthiouracil-treated animals respectively. Administration of tri-iodothyronine resulted in an approx. 4.5-fold increase in dehydrogenase activity in propylthiouracil-treated animals. A dose-dependent increase in hepatic GSH S-transferase activity in propylthiouracil-treated animals was observed at tri-iodothyronine concentrations ranging from 2 to 200 micrograms/100 g body wt. This increase in transferase activity was seen only when 1,2-epoxy-3-(p-nitrophenoxy)propane was used as substrate for the transferase. Transferase activity with 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrate was decreased by tri-iodothyronine. Administration of actinomycin D (75 micrograms/100 g body wt.) inhibited the tri-iodothyronine induction of transferase activity. Results of these studies strongly suggest that tri-iodothyronine administration markedly affected the activities of GSH S-transferase by inducing a specific isoenzyme of GSH S-transferase and suppressing other isoenzymic activities.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009596 Nitrophenols PHENOLS carrying nitro group substituents. Nitrophenol
D011441 Propylthiouracil A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534) 6-Propyl-2-Thiouracil,6 Propyl 2 Thiouracil
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D005260 Female Females
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

M T Williams, and H Carrington, and A Herrera
April 1984, Xenobiotica; the fate of foreign compounds in biological systems,
M T Williams, and H Carrington, and A Herrera
May 1981, Experientia,
M T Williams, and H Carrington, and A Herrera
September 1983, Biochemical pharmacology,
M T Williams, and H Carrington, and A Herrera
August 1983, Experientia,
M T Williams, and H Carrington, and A Herrera
July 1992, Arzneimittel-Forschung,
M T Williams, and H Carrington, and A Herrera
July 1988, Chemical & pharmaceutical bulletin,
M T Williams, and H Carrington, and A Herrera
April 1989, Journal of pharmacobio-dynamics,
M T Williams, and H Carrington, and A Herrera
October 1980, Clinica chimica acta; international journal of clinical chemistry,
M T Williams, and H Carrington, and A Herrera
August 1995, Biochemical Society transactions,
Copied contents to your clipboard!