Effects of iron deficiency and chronic iron overloading on mitochondrial heme biosynthetic enzymes in rat liver. 1986

N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere

The effects of iron deficiency and iron overloading on the mitochondrial enzymes involved in heme synthesis were studied in rat livers. The in vitro activities of several of the enzymes in this pathway were differentially influenced by the in vivo iron status of the animals. delta-Aminolevulinic acid synthase was slightly increased in iron-overloaded animals, but remained normal in iron-deficient animals (0.58 +/- 0.09, 0.91 +/- 0.19 and 0.61 +/- 0.12 nmol delta-aminolevulinic acid/mg per h). Copro- and protoporphyrinogen oxidase activities were increased (20 and 60% above controls) in iron-deficient animals. In contrast, coproporphyrinogen oxidase was decreased by 20%, while protoporphyrinogen oxidase remained unchanged in iron-overloaded rats. These variations of activities were not due to changes in the affinity of these enzymes toward their substrates, as coporphyrinogen had the same Km in each case (0.62 +/- 0.05 M) as did protoporphyrinogen (0.22 +/- 0.035 M). Thus, the Km did not vary with the treatment received by the animals. Ferrochelatase activity was measured by both the pyridine hemochromogen method and by measurement of zinc protoporphyrin with endogenous zinc as substrate. In all cases, ferrochelatase was found to be able to synthesize zinc protoporphyrin with endogenous zinc as substrate. However, the apparent Km of zinc chelatase for protoporphyrin was significantly different in the three groups of animals with Km,appProto, app = 2.4 +/- 0.1 10(-7), 4 +/- 0.3 10(-7) and 9.10 +/- 0.05 10(-7) M in iron-overloaded, control and iron-deficient animals, respectively. When ferrochelatase activity was measured by pyridine hemochromogen, identical results were observed in iron-deficient and control animals but decreased by 45% in iron-overloaded animals. The mitochondrial heme content was also decreased by 40% in iron-overloaded rats but unchanged in either iron-deficient or control rats.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003304 Coproporphyrinogen Oxidase An enzyme that catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX by the conversion of two propionate groups to two vinyl groups. It is the sixth enzyme in the 8-enzyme biosynthetic pathway of HEME, and is encoded by CPO gene. Mutations of CPO gene result in HEREDITARY COPROPORPHYRIA. Coproporphyrinogenase,Coproporphyrinogen III Oxidases,III Oxidases, Coproporphyrinogen,Oxidase, Coproporphyrinogen,Oxidases, Coproporphyrinogen III
D005294 Ferrochelatase A mitochondrial enzyme found in a wide variety of cells and tissues. It is the final enzyme in the 8-enzyme biosynthetic pathway of HEME. Ferrochelatase catalyzes ferrous insertion into protoporphyrin IX to form protoheme or heme. Deficiency in this enzyme results in ERYTHROPOIETIC PROTOPORPHYRIA. Heme Synthetase,Porphyrin-Metal Chelatase,Protoheme Ferro-Lyase,Zinc Chelatase,Chelatase, Porphyrin-Metal,Chelatase, Zinc,Ferro-Lyase, Protoheme,Porphyrin Metal Chelatase,Protoheme Ferro Lyase,Synthetase, Heme

Related Publications

N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
June 1975, British journal of experimental pathology,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
December 2019, Scientific reports,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
June 1987, Journal of applied physiology (Bethesda, Md. : 1985),
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
May 2016, Proceedings of the National Academy of Sciences of the United States of America,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
August 1987, European journal of biochemistry,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
July 2018, Natural product reports,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
January 1960, Blood,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
February 2014, Food & function,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
January 1982, Enzyme,
N G Abraham, and J M Camadro, and S T Hoffstein, and R D Levere
December 1985, Experimental and molecular pathology,
Copied contents to your clipboard!