Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal lateral geniculate nucleus. 1986

C Redies, and J M Crook, and O D Creutzfeldt

We investigated responses of neurones in cortical areas 17 and 18 and in the dorsal lateral geniculate nucleus (dLGN) of the cat to a phase shift in a moving line pattern forming a border without a luminance gradient ("subjective contour"). In both areas 17 and 18, S cells and B cells respond only slightly or not at all along the phase shift while C cells respond strongly. The response of C cells is strongest for line patterns with medium line separation and decreases with smaller and larger separation. In the dLGN the relative magnitude of neuronal responses along a phase shift is similar to that of C cells. However, C cells respond uniformly along the entire phase shift, whereas geniculate cells merely respond to individual line ends along the phase shift. In addition we compared responses along a phase shift and those to a luminance gradient formed by a dotted line whose dots were separated by the same distance as the line ends along the phase shift. S cells and B cells respond preferentially to dotted lines whereas C cells and geniculate cells respond equally well along both phase shifts and dotted lines. Possible explanations for these results in terms of receptive field structure and differences in inhibitory input to the cells are discussed. Differential neurone responses may account for the perceptual distinctness of the contours with and without luminance gradients.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

C Redies, and J M Crook, and O D Creutzfeldt
January 1973, Brain research,
C Redies, and J M Crook, and O D Creutzfeldt
September 2005, Neuroreport,
C Redies, and J M Crook, and O D Creutzfeldt
February 2002, The Journal of physiology,
C Redies, and J M Crook, and O D Creutzfeldt
May 1988, Brain research bulletin,
C Redies, and J M Crook, and O D Creutzfeldt
May 1973, Okajimas folia anatomica Japonica,
C Redies, and J M Crook, and O D Creutzfeldt
August 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Redies, and J M Crook, and O D Creutzfeldt
December 1991, The Journal of comparative neurology,
C Redies, and J M Crook, and O D Creutzfeldt
January 2004, Visual neuroscience,
Copied contents to your clipboard!