Ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey. 1986

H P Killackey, and L M Chalupa

In the postcentral gyrus of the mature rhesus monkey the distribution of callosal projection neurons is discontinuous. The density of callosal projection neurons, which are mainly located in the supragranular layers, varies both within and across cytoarchitectonic areas (Killackey et al., '83). In the present study, we investigated the ontogeny of corpus callosum projections of the postcentral gyrus in five fetal rhesus monkeys, ranging in age from embryonic day (E) 108 to E 133. Multiple large injections of horseradish peroxidase that involved the underlying white matter were made into the postcentral gyrus of one hemisphere and the distribution of labeled neurons in the ipsilateral thalamus and the other hemisphere was determined. The pattern of thalamic label indicated that the tracer was effectively transported from all portions of the postcentral gyrus. We found that the areal distribution pattern of labeled callosal projection neurons varied at the different fetal ages. At early fetal ages (E 108, E 111, and E 119) callosal projection neurons were continuously distributed throughout the postcentral gyrus. As in the adult animal, the vast majority of labeled callosal projection neurons were found in the supragranular layers, although a few labeled cells were located in the infragranular layers. From the earliest age, there was regional variation in the width of the band of labeled supragranular callosal projection neurons. The difference between the precentral and postcentral gyrus was most obvious, but there was also a difference between anterior and posterior portions of the postcentral gyrus. The first indication of some discontinuity in the distribution of callosal projection neurons was noted at E 126. By E 133, approximately 1 month before birth, the distribution of callosal projection neurons appeared remarkably mature. On E 119 aggregations of anterograde label could be detected in restricted portions of the posterior postcentral gyrus beneath the cortical layers. By E 133 anterograde label was found within the cortical layers (most densely in layer IV) in these regions of the postcentral gyrus. Thus, the emergence of the discrete pattern of callosal projection neurons appears to be temporally correlated with the ingrowth of callosal afferents. On the basis of these observations, as well as those of others (discussed in the text), we propose that the ontogenetic changes in the distribution of callosal projection neurons reflect the unique strategy employed by cortical projection neurons in establishing their patterns of connectivity. It is hypothesized that this strategy may involve multiple processes.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009893 Opossums New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth. Didelphidae,Opossum
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

H P Killackey, and L M Chalupa
January 1972, Pflugers Archiv : European journal of physiology,
H P Killackey, and L M Chalupa
December 1973, Brain : a journal of neurology,
H P Killackey, and L M Chalupa
August 1996, Neuroscience letters,
H P Killackey, and L M Chalupa
September 1979, Brain research,
H P Killackey, and L M Chalupa
September 1959, Bulletin of the Johns Hopkins Hospital,
H P Killackey, and L M Chalupa
January 1970, Transactions of the American Neurological Association,
H P Killackey, and L M Chalupa
January 1987, Journal fur Hirnforschung,
H P Killackey, and L M Chalupa
January 1981, The Journal of comparative neurology,
Copied contents to your clipboard!