Intracerebral transplants of the rat fascia dentata: a Golgi/electron microscope study of dentate granule cells. 1986

M Frotscher, and J Zimmer

In the present study we describe the morphological characteristics of dentate granule cells in intracerebral allografts of the rat fascia dentata. Blocks of hippocampal tissue containing the fascia dentata were taken from late embryonic and newborn rats and transplanted to the hippocampal region of other newborn and young adult rats. After survival periods of several months the recipient brains were fixed by perfusion and serially sectioned on a Vibratome. Some sections were stained with thionin to determine the localization and general histological organization of the transplants, while others were Golgi stained with a modification of the section Golgi technique. Well-impregnated transplant granule cells were gold-toned and deimpregnated thus allowing a correlated, light and electron microscopic analysis of identified neurons to be done. At the light microscopic level the morphology of the dentate granule cells in the transplants was very similar to Golgi-impregnated, gold-toned granule cells in the fascia dentata of normal rats (controls). A few irregular, more obliquely curved dendrites occurred, but basal dendrites passing into the hilar region were never observed. Following an initial spine-free segment granule cell dendrites were densely covered with spines. The axon, the mossy fiber, originated as usual from the basal pole of the cell body. In the electron microscope, both small and larger complex spines (v and w types) were seen to emerge from the gold-toned dendrites of the identified granule cells. The thin unmyelinated granule cell axons gave rise to giant mossy fiber boutons in the dentate hilus, but in addition numerous aberrant mossy fiber terminals were found innermost in the dentate molecular layer just above the granule cell layer. The results demonstrate that dentate granule cells that have gone through the major part of their differentiation after transplantation develop characteristic dendritic and axonal elements very similar to those of granule cells in the fascia dentata in situ. The minor changes observed correspond to the redistribution of intrinsic connections that results from the absence of major extrinsic afferents.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Frotscher, and J Zimmer
November 1991, Journal of neurocytology,
M Frotscher, and J Zimmer
March 1990, The Journal of comparative neurology,
M Frotscher, and J Zimmer
November 1981, Journal of neurophysiology,
Copied contents to your clipboard!