Cellular electrophysiologic changes and "arrhythmias" during experimental ischemia and reperfusion in isolated cat ventricular myocardium. 1986

S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg

The cellular electrophysiologic consequences of both regional and global experimental ischemia and reperfusion were studied in the isolated cat myocardium, using conventional microelectrode techniques. Oxygenated Tyrode's solution was perfused through the left anterior descending and circumflex coronary arteries, while the preparation was superfused with Tyrode's solution gassed with 95% nitrogen and 5% carbon dioxide. Electrophysiologic characteristics of endocardial muscle cells were normal during coronary perfusion. When perfusion was discontinued for 30 minutes, resting membrane potential was decreased by 21.6 +/- 4.1%, action potential amplitude was decreased by 29.1 +/- 8.6% and action potential duration was decreased by 54.1 +/- 12.5% (p less than 0.001). Ectopic activity occurred after 5 to 10 minutes of ischemia and was more frequent in regional than in global ischemia (p less than 0.05). Rapid ventricular activity was observed in only 5 (17%) of 29 preparations during ischemia, whereas it occurred in 24 (83%) of 29 preparations during reperfusion. Rapid ventricular activity began 5 to 40 seconds (mean 19) after the start of reperfusion, stopped spontaneously after a mean of 113 +/- 211 seconds and occurred after both regional and global ischemia. The cellular electrophysiologic changes induced by ischemia returned to baseline values within the next 5 minutes. Repeated ischemia and reperfusion runs reproduced the same electrophysiologic changes and rapid ventricular activity. Coronary perfusion with procainamide (20 mg/liter) aggravated the ischemic depressions of action potential amplitude and action potential duration and increased conduction delay during ischemia, but it did not prevent rapid ventricular activity induced by reperfusion. In contrast, verapamil (1 mg/liter) perfusion did not affect the changes in action potential variables during ischemia but prevented reperfusion-induced rapid ventricular activity. Perfusion with calcium ion (Ca2+)-free Tyrode's solution just before ischemia and during reperfusion slowed or prevented reperfusion-induced rapid ventricular activity, without affecting the action potential changes during ischemia. It is concluded that, in these isolated perfused ventricular muscle preparations, different mechanisms may be operative in ischemic and reperfusion arrhythmias and Ca2+ may play an important role in the development of arrhythmias during the reperfusion phase of ischemia/reperfusion sequences.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011342 Procainamide A class Ia antiarrhythmic drug that is structurally-related to PROCAINE. Procaine Amide,Apo-Procainamide,Biocoryl,Novocainamide,Novocamid,Procainamide Hydrochloride,Procamide,Procan,Procan SR,Procanbid,Pronestyl,Rhythmin,Amide, Procaine,Hydrochloride, Procainamide
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D005260 Female Females
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
July 2004, Journal of applied physiology (Bethesda, Md. : 1985),
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
August 1987, Circulation,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
June 1969, The Johns Hopkins medical journal,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
March 2009, Journal of pineal research,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
October 1992, Japanese circulation journal,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
November 1986, American heart journal,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
January 1983, The American journal of cardiology,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
June 1983, Cardiovascular research,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
December 2002, Archives des maladies du coeur et des vaisseaux,
S Kimura, and A L Bassett, and N C Saoudi, and J S Cameron, and P L Kozlovskis, and R J Myerburg
June 1983, American heart journal,
Copied contents to your clipboard!