Spatial properties of the prolonged depolarizing afterpotential in barnacle photoreceptors. I. The induction process. 1986

E Almagor, and P Hillman, and B Minke

In invertebrate photoreceptors, when the light stimulus results in substantial net transfer of the visual pigment from the rhodopsin (R) to the metarhodopsin (M) state, the ordinary late receptor potential (LRP) is followed by a prolonged depolarizing afterpotential (PDA). The dependence of the amplitude of the PDA on the amount of pigment conversion is strongly supralinear, and the PDA duration also depends on this amount. These observations indicate an interaction among the elements of the PDA induction process and also make possible a test of the range of this interaction. The test consists of a comparison of the PDA after localized pigment conversion, obtained by strong spot illumination, to that after weaker diffuse illumination converting a comparable total amount of pigment. The experiment was performed on the barnacle lateral eye. The effective spot size was measured by the early receptor potential (ERP), in seawater saturated with CO2, which considerably reduced the electrical coupling between the photoreceptors. The ERP was also used to determine whether there is diffusion of R molecules into the illuminated spot. The spot illumination induced a PDA with small amplitude and long duration, while no detectable PDA was induced by the diffuse light. This indicates that the range of the PDA interaction is much smaller than the entire cell. In addition, the ERP results showed that there was no detectable diffusion of R molecules into the illuminated spot area over 30 min. This measurement, with a calculated correction for the microvillar geometry of the photoreceptor, enabled us to put an upper limit on the diffusion coefficient of the pigment molecules in the inact, unfixed barnacle photoreceptor of D less than 6 X 10(-9) cm2 s-1.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001468 Thoracica A superorder of marine CRUSTACEA, free swimming in the larval state, but permanently fixed as adults. There are some 800 described species, grouped in several genera, and comprising of two major orders of barnacles: stalked (Pedunculata) and sessile (Sessilia). Balanus,Barnacles,Pedunculata,Sessilia,Barnacle,Pedunculatas,Sessilias,Thoracicas
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple

Related Publications

E Almagor, and P Hillman, and B Minke
October 1977, The Journal of general physiology,
E Almagor, and P Hillman, and B Minke
February 1993, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
E Almagor, and P Hillman, and B Minke
June 1977, Biophysics of structure and mechanism,
E Almagor, and P Hillman, and B Minke
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
E Almagor, and P Hillman, and B Minke
April 1997, Neuroreport,
E Almagor, and P Hillman, and B Minke
January 1979, The Journal of physiology,
Copied contents to your clipboard!