Effects of changes in excitability and intercellular coupling on synchronization in the rabbit sino-atrial node. 1986

M Delmar, and J Jalife, and D C Michaels

The mechanisms of synchronization between sino-atrial pace-maker cells were studied in biological preparations from rabbit hearts, and in computer simulations of the Hodgkin & Huxley type. For biological experiments, thin strips of sino-atrial node were placed in a three-compartment bath. The electrical properties of the tissue in the middle segment (the 'gap') were manipulated pharmacologically to alter electrical coupling and/or excitability of cells in that segment, and to study the patterns of interaction between two pace-maker centres in the external segments. Superfusion of the gap segment with either verapamil (2 microM) or acetylcholine (10 microM) produced a loss of 1:1 synchrony (entrainment) of spontaneous discharges generated by the external pace-makers but subharmonic (i.e. 3:2; 5:4; 9:8; etc.) entrainment was always maintained. When the gap segment was superfused with heptanol (3.5 mM), which is known to increase intercellular resistance, the pace-maker centres in the external chambers beat independently of one another. Progressive loss of synchrony paralleled reductions in amplitude of electrotonic responses to current pulses applied across the gap. Gap superfusion with hypertonic Tyrode solution (600 mosM) produced a major reduction in the degree of synchronization between the external pace-makers, even though the cells in the central compartment maintained their excitability. Under these conditions, as many as three independent pace-maker centres, one in each chamber, coexisted in a given preparation. Using computerized simulations based on equations of time- and voltage-dependent membrane currents, three 'cells', each capable of maintaining spontaneous activity, were connected in a linear array through ohmic resistances. When selective parameters (e.g. membrane conductances, coupling resistance) were modified appropriately, the mathematical simulations reproduced very closely the interaction patterns observed in the experimental preparations. Our results show that synchronization in the sinus node results from mutual interactions and entrainment between all the cells in this region. These interactions are of the kind expected for a population of coupled, self-sustained oscillators, and are mediated through electrotonic propagation of current across low-resistance junctions.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D007552 Isotonic Solutions Solutions having the same osmotic pressure as blood serum, or another solution with which they are compared. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed) Solutions, Isotonic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000438 Alcohols Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes

Related Publications

M Delmar, and J Jalife, and D C Michaels
January 1986, Japanese journal of pharmacology,
M Delmar, and J Jalife, and D C Michaels
May 1979, The Journal of physiology,
M Delmar, and J Jalife, and D C Michaels
April 1984, Japanese journal of pharmacology,
M Delmar, and J Jalife, and D C Michaels
May 1981, Experientia,
M Delmar, and J Jalife, and D C Michaels
October 1967, The Journal of pharmacology and experimental therapeutics,
M Delmar, and J Jalife, and D C Michaels
May 1986, British journal of pharmacology,
M Delmar, and J Jalife, and D C Michaels
January 1985, Proceedings of the Royal Society of London. Series B, Biological sciences,
M Delmar, and J Jalife, and D C Michaels
May 2002, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
M Delmar, and J Jalife, and D C Michaels
October 1999, Pflugers Archiv : European journal of physiology,
M Delmar, and J Jalife, and D C Michaels
September 1990, The Journal of physiology,
Copied contents to your clipboard!