Electrophysiological properties of sympathetic preganglionic neurons in the cat spinal cord in vitro. 1986

M Yoshimura, and C Polosa, and S Nishi

Intracellular recordings were obtained from sympathetic preganglionic neurons of the intermedio-lateral nucleus of the adult cat in slices of upper thoracic spinal cord maintained in vitro. The neurons were identified by their antidromic responses to stimulation of various ipsilateral sites. Sites from which antidromic responses could be evoked were the white ramus, the ventral root, the ventral root exit zone, the white matter between the latter and the outer edge of the tip of the ventral horn, the lateral edge of the ventral horn. Resting membrane potential was --61.3 +/- 1.6 mV (mean +/- SEM), input resistance 67.5 +/- 3.7 M omega, time constant 11.5 +/- 1.2 ms. The amplitude of the action potential generated by antidromic or direct stimulation was 77.4 +/- 2.3 mV. Threshold for direct spikes was 18.2 +/- 1.8 mV. The action potential had an average duration of 3.03 +/- 0.16 ms. It showed a prominent "hump" on the falling phase. The action potential had a tetrodotoxin (TTX)-sensitive and a TTX-resistant component. The latter was abolished by cobalt. Tetraethylammonium, cesium and barium prolonged the action potential duration which acquired a plateau-shape. A prolonged after-hyperpolarization (AHP) followed the sympathetic preganglionic neuron spike. Following a single spike, AHP duration and peak amplitude were 2.8 +/- 0.3 s and 16.6 +/- 0.7 mV, respectively. The AHP was abolished by cesium or barium, but enhanced by tetraethylammonium. An AHP followed the TTX-resistant spike. EPSPs and IPSPs could be generated by focal stimulation. The EPSP triggered spikes when threshold (15.0 +/- 2.0 mV) was reached.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

M Yoshimura, and C Polosa, and S Nishi
June 1975, Brain research,
M Yoshimura, and C Polosa, and S Nishi
September 1994, Brain research,
M Yoshimura, and C Polosa, and S Nishi
January 1974, Doklady Akademii nauk SSSR,
M Yoshimura, and C Polosa, and S Nishi
January 1987, Journal of the autonomic nervous system,
M Yoshimura, and C Polosa, and S Nishi
May 1980, Journal of neurophysiology,
M Yoshimura, and C Polosa, and S Nishi
January 1972, Neuroscience and behavioral physiology,
M Yoshimura, and C Polosa, and S Nishi
November 1971, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
M Yoshimura, and C Polosa, and S Nishi
November 1981, The American journal of physiology,
M Yoshimura, and C Polosa, and S Nishi
January 1974, Neirofiziologiia = Neurophysiology,
Copied contents to your clipboard!