Renal mitochondrial glutamine metabolism during K+ depletion. 1986

S Sastrasinh, and M Sastrasinh

We studied changes in renal mitochondrial glutamine metabolism during the development of and recovery from K+ depletion in rats. Significant increase in mitochondrial NH3 production was noted after 3 days of K+-free diet. Ammoniagenesis in K+-depleted animals reached maximal level within 2 wk of K+ deprivation when there was 64% increase in NH3 production. In contrast to the pattern of changes in mitochondrial ammoniagenesis, phosphate-dependent glutaminase (PDG) activity increased within the first 48 h of K+ deprivation, before there was any increase in NH3 production, and did not plateau even after 2 wk of K+-free diet. The disparity between NH3 production and PDG activity cannot be explained by the difference in matrix glutamate level, thus raising the possibility that mitochondrial glutamine entry may be a rate-limiting step for ammoniagenesis during K+ depletion. Recovery from K+ depletion was studied in animals prefed with K+-free diet for 2 wk prior to the initiation of K+-supplemented diet. Muscle K+ content of K+-depleted animals returned to normal after 1 wk of K+ replacement. Mitochondrial NH3 production decreased concomitantly with the attenuation in K+ deficit but did not reach the base-line value even after K+ deficit was completely corrected. Additional experiments with isolated cortical tubules also showed persistent increase in NH3 production after the correction of K+ deficit. Thus, unlike earlier studies in rats during the recovery from metabolic acidosis, which showed only increased ammoniagenesis in isolated mitochondria but not in cortical slices, animals recovered from K+ depletion demonstrated augmented NH3 production both in isolated mitochondria and intact renal tissues.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D005972 Glutaminase Phosphate-Activated Glutaminase,Glutaminase, Phosphate-Activated,Phosphate Activated Glutaminase
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Sastrasinh, and M Sastrasinh
September 2001, The Journal of nutrition,
S Sastrasinh, and M Sastrasinh
February 1976, The Journal of biological chemistry,
S Sastrasinh, and M Sastrasinh
May 1975, Kidney international,
S Sastrasinh, and M Sastrasinh
January 2024, International journal of biological sciences,
S Sastrasinh, and M Sastrasinh
November 2000, Free radical biology & medicine,
S Sastrasinh, and M Sastrasinh
January 1991, Archives of surgery (Chicago, Ill. : 1960),
S Sastrasinh, and M Sastrasinh
January 1984, Revue neurologique,
S Sastrasinh, and M Sastrasinh
January 1990, JPEN. Journal of parenteral and enteral nutrition,
S Sastrasinh, and M Sastrasinh
June 1971, The American journal of physiology,
S Sastrasinh, and M Sastrasinh
March 1972, The American journal of physiology,
Copied contents to your clipboard!