Effects of antidepressant drugs on the behavior of olfactory bulbectomized and sham-operated rats. 1986

J A Jesberger, and J S Richardson

Removal of the main olfactory bulbs in rats has been shown to alter neuronal function in brain areas involved in emotional regulation and homeostasis. These neuronal alterations result in maladaptive behavioral patterns and elevated plasma corticosterone that are suggestive of the symptom profile of patients with primary unipolar depression. Moreover, the endocrine and behavioral deficits of bulbectomized rats are reversed by the chronic administration of drugs that reverse the symptoms of depression in people when given chronically. However, the therapeutic improvements seen in patients with depression are not directly due to molecules of the antidepressant drug but rather to some relatively long-lasting compensatory change induced in the neuronal substrate by the drug. The present research demonstrates that the reversal of the olfactory bulb lesion deficits following chronic antidepressant drug administration in rats is not due to molecules of the drug per se but rather to some drug-induced change in the neuronal substrate that continues for at least 5 days after the last dose of drug. These endocrine, behavioral, and pharmacological similarities suggest that the study of rats with olfactory bulb ablation may make significant contributions to the understanding of the neuroscience of primary unipolar depression in humans.

UI MeSH Term Description Entries
D007488 Iprindole A tricyclic antidepressant that has actions and uses similar to those of AMITRIPTYLINE, but has only weak antimuscarinic and sedative effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p257)
D008297 Male Males
D008803 Mianserin A tetracyclic compound with antidepressant effects. It may cause drowsiness and hematological problems. Its mechanism of therapeutic action is not well understood, although it apparently blocks alpha-adrenergic, histamine H1, and some types of serotonin receptors. Lerivon,Mianserin Hydrochloride,Mianserin Monohydrochloride,Org GB 94,Tolvon,Hydrochloride, Mianserin,Monohydrochloride, Mianserin
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D003866 Depressive Disorder An affective disorder manifested by either a dysphoric mood or loss of interest or pleasure in usual activities. The mood disturbance is prominent and relatively persistent. Depression, Endogenous,Depression, Neurotic,Depression, Unipolar,Depressive Syndrome,Melancholia,Neurosis, Depressive,Unipolar Depression,Depressions, Endogenous,Depressions, Neurotic,Depressions, Unipolar,Depressive Disorders,Depressive Neuroses,Depressive Neurosis,Depressive Syndromes,Disorder, Depressive,Disorders, Depressive,Endogenous Depression,Endogenous Depressions,Melancholias,Neuroses, Depressive,Neurotic Depression,Neurotic Depressions,Syndrome, Depressive,Syndromes, Depressive,Unipolar Depressions
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000639 Amitriptyline Tricyclic antidepressant with anticholinergic and sedative properties. It appears to prevent the re-uptake of norepinephrine and serotonin at nerve terminals, thus potentiating the action of these neurotransmitters. Amitriptyline also appears to antagonize cholinergic and alpha-1 adrenergic responses to bioactive amines. Amineurin,Amitrip,Amitriptylin Beta,Amitriptylin Desitin,Amitriptylin RPh,Amitriptylin-Neuraxpharm,Amitriptyline Hydrochloride,Amitrol,Anapsique,Apo-Amitriptyline,Damilen,Domical,Elavil,Endep,Laroxyl,Lentizol,Novoprotect,Saroten,Sarotex,Syneudon,Triptafen,Tryptanol,Tryptine,Tryptizol,Amitriptylin Neuraxpharm,Apo Amitriptyline,Desitin, Amitriptylin,RPh, Amitriptylin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000928 Antidepressive Agents Mood-stimulating drugs used primarily in the treatment of affective disorders and related conditions. Several MONOAMINE OXIDASE INHIBITORS are useful as antidepressants apparently as a long-term consequence of their modulation of catecholamine levels. The tricyclic compounds useful as antidepressive agents (ANTIDEPRESSIVE AGENTS, TRICYCLIC) also appear to act through brain catecholamine systems. A third group (ANTIDEPRESSIVE AGENTS, SECOND-GENERATION) is a diverse group of drugs including some that act specifically on serotonergic systems. Antidepressant,Antidepressant Drug,Antidepressant Medication,Antidepressants,Antidepressive Agent,Thymoanaleptic,Thymoanaleptics,Thymoleptic,Thymoleptics,Antidepressant Drugs,Agent, Antidepressive,Drug, Antidepressant,Medication, Antidepressant

Related Publications

J A Jesberger, and J S Richardson
January 1990, Pharmacology & therapeutics,
J A Jesberger, and J S Richardson
May 1985, Pharmacology, biochemistry, and behavior,
J A Jesberger, and J S Richardson
February 1986, Pharmacology, biochemistry, and behavior,
J A Jesberger, and J S Richardson
December 2008, The Chinese journal of physiology,
J A Jesberger, and J S Richardson
June 1991, Biological psychiatry,
J A Jesberger, and J S Richardson
January 2001, Polish journal of pharmacology,
J A Jesberger, and J S Richardson
April 1981, Japanese journal of pharmacology,
J A Jesberger, and J S Richardson
February 1997, Behavioural brain research,
Copied contents to your clipboard!