Mechanisms underlying the effects of phosphate and calcitonin on bone histology in postmenopausal osteoporosis. 1986

P J Marie, and F Caulin

The aim of this study was to evaluate the mechanism underlying the beneficial effect of phosphate combined with calcitonin on trabecular bone mass in postmenopausal osteoporosis. Histomorphometric parameters of trabecular bone formation and resorption were assessed blindly on sections from tetracycline-labeled iliac crest bone biopsies from 44 women with postmenopausal osteoporosis obtained before and after 6 months of treatment with phosphate (n = 9), calcitonin (n = 13), combined therapy (n = 13), or double placebos (n = 9). Treatment with phosphate (1.5 g/day) increased the osteoblastic surface in correlation with the fractional trabecular surface with double tetracycline labeling. The mean wall thickness of the basic structural units increased significantly only in the two groups of patients treated with phosphate. Thus, oral phosphate therapy stimulated bone formation by increasing both the bone-forming surfaces and bone matrix production. The mean interstitial bone thickness, which is inversely related to the depth of resorbing cavities, was increased in the two groups treated with calcitonin (50 IU X 5 days every third week), indicating that calcitonin therapy partially inhibited the resorbing activity of osteoclasts. The combination of calcitonin and phosphate produced a reduction in bone resorption associated with a stimulation of bone matrix production. This effect resulted in a 22.1% increase in the thickness of the trabeculae and a 31.1% increase in trabecular bone volume. The data show that calcitonin combined with phosphate increased the trabecular bone volume in postmenopausal osteoporosis through reduction of bone resorption associated with stimulation of bone formation along the trabecular bone surface.

UI MeSH Term Description Entries
D008593 Menopause The last menstrual period. Permanent cessation of menses (MENSTRUATION) is usually defined after 6 to 12 months of AMENORRHEA in a woman over 45 years of age. In the United States, menopause generally occurs in women between 48 and 55 years of age. Change of Life, Female
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010024 Osteoporosis Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis. Age-Related Osteoporosis,Bone Loss, Age-Related,Osteoporosis, Age-Related,Osteoporosis, Post-Traumatic,Osteoporosis, Senile,Senile Osteoporosis,Osteoporosis, Involutional,Age Related Osteoporosis,Age-Related Bone Loss,Age-Related Bone Losses,Age-Related Osteoporoses,Bone Loss, Age Related,Bone Losses, Age-Related,Osteoporoses,Osteoporoses, Age-Related,Osteoporoses, Senile,Osteoporosis, Age Related,Osteoporosis, Post Traumatic,Post-Traumatic Osteoporoses,Post-Traumatic Osteoporosis,Senile Osteoporoses
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002113 Calcification, Physiologic Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts. Bone Mineralization,Calcification, Physiological,Physiologic Calcification,Mineralization, Bone,Physiological Calcification
D002116 Calcitonin A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults. Thyrocalcitonin,Calcitonin(1-32),Calcitrin,Ciba 47175-BA,Eel Calcitonin,Calcitonin, Eel,Ciba 47175 BA,Ciba 47175BA

Related Publications

P J Marie, and F Caulin
January 1984, Clinical endocrinology,
P J Marie, and F Caulin
October 1988, The Journal of clinical investigation,
P J Marie, and F Caulin
January 1995, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
P J Marie, and F Caulin
January 2004, Acta medica Croatica : casopis Hravatske akademije medicinskih znanosti,
P J Marie, and F Caulin
April 1982, Lancet (London, England),
P J Marie, and F Caulin
April 1985, The New England journal of medicine,
P J Marie, and F Caulin
August 1987, Orvosi hetilap,
P J Marie, and F Caulin
July 1985, Medicina clinica,
Copied contents to your clipboard!