Modulation of 5-fluorouracil catabolism in isolated rat hepatocytes with enhancement of 5-fluorouracil glucuronide formation. 1985

J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio

The catabolism of 5-fluorouracil (FUra), which accounts for 90% of the elimination of this antimetabolite in vivo, has recently been characterized in freshly isolated rat hepatocytes in suspension using a highly specific high-performance liquid chromatographic methodology. The present study evaluates the effect of thymine and uracil, which are thought to be catabolized by the same enzymes as FUra, on the metabolism and transmembrane distribution of FUra in isolated rat hepatocytes. Following simulataneous exposure of cells for 5 min to 30 microM [6-3H]FUra and increasing concentrations of either thymine or uracil, dihydrofluorouracil (FUH2) levels decreased in a concentration-dependent manner, and the concentration determined for 50% inhibition of FUra catabolism was 8.0 +/- 0.3 (S.D.) and 67.8 +/- 15.6 microM for thymine and uracil, respectively. Analysis of intracellular and extracellular 3H from 1 min to 2 hr after simultaneous incubation of the hepatocytes with 30 microM FUra and thymine (or uracil) in a 1:7 molar ratio resulted in a decrease of intracellular and extracellular FUH2 and alpha-fluoro-beta-alanine (FBAL), while alpha-fluoro-beta-ureidopropionic acid (FUPA) was enhanced. Unmetabolized FUra (not detected in the absence of thymine or uracil) was detected intracellularly in the presence of thymine or uracil and was accompanied by the appearance of a novel metabolite, preliminarily identified as a glucuronide of the FUra base which reached intracellular levels of 44 +/- 9.76 and 27.45 +/- 1.35 microM in the presence of thymine or uracil, respectively, within 1 hr. This metabolite, which penetrates the cell membrane only slowly, accounted for approximately 60% of the intracellular 3H in the presence of 300 microM FUra and 2 mM thymine, whereas FUra catabolism was inhibited by more than 99% under these conditions. The formation of FUra anabolites was insignificant in the presence of thymine and uracil, and incorporation of FUra into RNA was not enhanced. The lack of anabolism of FUra in isolated hepatocytes exposed to either high initial concentrations of FUra or high intracellular FUra concentrations resulting from modulation (inhibition) of FUra catabolism is consistent with the clinical observation of minimal hepatotoxicity with FUra, despite exposure of the liver to high blood levels. These studies indicate that thymine is a more potent modulator of FUra catabolism in hepatocytes than is uracil. Further studies are needed to clarify the biological importance of the glucuronide of the base FUra which accumulates intracellularly as the concentration of FUra increases within the hepatocytes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011741 Pyrimidine Nucleosides Pyrimidines with a RIBOSE attached that can be phosphorylated to PYRIMIDINE NUCLEOTIDES. Nucleosides, Pyrimidine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005472 Fluorouracil A pyrimidine analog that is an antineoplastic antimetabolite. It interferes with DNA synthesis by blocking the THYMIDYLATE SYNTHETASE conversion of deoxyuridylic acid to thymidylic acid. 5-FU,5-FU Lederle,5-FU Medac,5-Fluorouracil,5-Fluorouracil-Biosyn,5-HU Hexal,5FU,Adrucil,Carac,Efudex,Efudix,Fluoro-Uracile ICN,Fluoroplex,Fluorouracil Mononitrate,Fluorouracil Monopotassium Salt,Fluorouracil Monosodium Salt,Fluorouracil Potassium Salt,Fluorouracil-GRY,Fluorouracile Dakota,Fluorouracilo Ferrer Far,Fluoruracil,Fluracedyl,Flurodex,Haemato-FU,Neofluor,Onkofluor,Ribofluor,5 FU Lederle,5 FU Medac,5 Fluorouracil,5 Fluorouracil Biosyn,5 HU Hexal,Dakota, Fluorouracile,Fluoro Uracile ICN,Fluorouracil GRY,Haemato FU
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013941 Thymine One of four constituent bases of DNA. 5-Methyluracil,5 Methyluracil

Related Publications

J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
December 1989, Cancer research,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
January 1984, Pharmacology,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
June 1980, The Biochemical journal,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
December 1977, Canadian journal of biochemistry,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
September 1991, Biochemical pharmacology,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
December 1997, International journal of radiation oncology, biology, physics,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
June 1986, Biochemical pharmacology,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
June 1984, Biochemical pharmacology,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
September 1984, Biochemical pharmacology,
J P Sommadossi, and D A Gewirtz, and D S Cross, and I D Goldman, and J P Cano, and R B Diasio
February 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!