Germinal vesicle contents are required for the cytoplasmic cycle during meiotic division of starfish oocytes. 1985

K Yamamoto

Enucleated oocytes of starfish still show cyclic changes in cortical tension with a temporal pattern similar to that exhibited by intact oocytes during meiotic division, provided that the enucleation is performed a certain time after the breakdown of the germinal vesicle (K. Yamamoto and M. Yoneda, Dev. Biol. 96, 166-172, 1983). If an oocyte is bisected immediately after germinal vesicle breakdown, the resulting nonnucleate fragment shows some change in tension, but the pattern of change is much less regular than that seen in intact oocytes, suggesting that the dispersion of germinal vesicle (GV) contents into cytoplasm is required for the establishment of the cytoplasmic cycle. In order to demonstrate the role of GV contents directly, nonnucleate fragments derived from immature oocytes were injected with GV contents taken from other immature oocytes. On treatment with 1-methyladenine (1-MA) these fragments showed two rounds of increase in tension as is characteristic of intact maturing oocytes. The first rise in tension was always observed 50-70 min after the treatment with 1-MA, similar to the time of first polar body formation in intact oocytes, regardless of the time of injection of GV contents. Even when GV contents were injected into nonnucleate fragments which had been already treated with 1-MA, these fragments showed two rounds of change in tension. The timing of the first rise in tension was found to be 38 +/- 7 min after injection, irrespective of the time of the foregoing treatment with 1-MA. These results prove the indispensability of GV contents for inducing the cytoplasm of the maturing starfish oocyte to initiate its own cyclic activity, and suggest that the normal process of cytoplasmic maturation may consist of two phases, i.e., (1) a GV-independent phase initiated by 1-MA treatment, and (2) a second phase initiated by mixing of GV contents with cytoplasm.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005260 Female Females
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D013215 Starfish Echinoderms having bodies of usually five radially disposed arms coalescing at the center. Sea Star,Seastar,Starfishes,Sea Stars,Seastars

Related Publications

K Yamamoto
June 1967, Experimental cell research,
K Yamamoto
April 1998, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!