Fibronectin visualized by scanning electron microscopy immunocytochemistry on the substratum for cell migration in Xenopus laevis gastrulae. 1985

N Nakatsuji, and M A Smolira, and C C Wylie

In amphibian gastrulae, scanning electron microscopy (SEM) has shown the presence of a network of extracellular fibrils on the inner aspect of the ectoderm layer, which serves as the substratum for migration by the presumptive mesoderm cells. In vitro experiments have shown that the fibril network promotes attachment and migration by mesoderm cells, and probably guides the migration by contact guidance. Filopodia of the migrating cells showed preferential attachment to the fibrils. Use of a colloidal gold probe for SEM immunocytochemistry has shown that fibrils observed by SEM contain fibronectin, probably as a major component. This provides direct evidence that the extracellular matrix containing fibronectin provides the substratum and guides cell migration in morphogenetic movement.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

N Nakatsuji, and M A Smolira, and C C Wylie
December 1976, Journal of embryology and experimental morphology,
N Nakatsuji, and M A Smolira, and C C Wylie
April 2001, Cell and tissue research,
N Nakatsuji, and M A Smolira, and C C Wylie
March 2023, Journal of morphology,
N Nakatsuji, and M A Smolira, and C C Wylie
April 1980, Experientia,
N Nakatsuji, and M A Smolira, and C C Wylie
January 1986, Scanning electron microscopy,
N Nakatsuji, and M A Smolira, and C C Wylie
July 2015, Experimental eye research,
N Nakatsuji, and M A Smolira, and C C Wylie
January 1993, Development (Cambridge, England),
Copied contents to your clipboard!