Characterization of specific binding sites for [3H](d)-N-allylnormetazocine in rat brain membranes. 1985

Y Itzhak, and J M Hiller, and E J Simon

Binding of [3H](d)-N-allylnormetazocine ([3H](d)-NANM) to rat brain membranes is stereospecific, reversible, and saturable (Bmax = 260 fmol/mg of protein) and manifests moderately high affinity (Kd = 20 nM). The rank order of potency among opioidbenzomorphans and phencyclidine (PCP) analogs for competition for [3H](d)-NANM-binding sites is as follows: (d)-NANM = PCP-3-OH greater than (d)-cyclazocine greater than N-ethylphenylcyclohexylamine greater than PCP greater than (l)-cyclazocine = dextrorphan greater than (d/l)-ethylketocyclazocine greater than (d/l)-bremazocine greater than (1)-NANM greater than 1-phenylcyclohexylamine greater than levorphanol. Other opioid ligands, relatively selective for each of the types of opioid binding sites other than sigma, such as morphine (mu), H-Tyr-D-Ala(Me)Phe-NH-CH2-OH (mu), D-Ala2-D-Leu5-enkephalin (delta), tifluadom (kappa), and U 50488 (kappa) as well as etorphine and naloxone were all unable to compete with [3H](d)-NANM for specific binding even at a concentration of 1 microM. Regional distribution studies of [3H](d)-NANM-binding sites show high density in the hippocampus, thalamus, hypothalamus, and amygdala and low density in cerebellum and nonfrontal neocortex membranes of the rat brain. These binding sites are very sensitive to protein-modifying enzymes and reagents such as trypsin and N-ethylmaleimide and to heat denaturation. These results provide direct biochemical evidence for the existence of distinct (d)-NANM-binding sites in rat brain. In addition, this study supports the view that PCP and several of its analogues and the dextrorotatory isomers of psychotomimetic benzomorphans may act at a common recognition site in rat central nervous system.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010620 Phenazocine An opioid analgesic with actions and uses similar to MORPHINE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1095) Phenbenzorphan,Phenethylazocine,Narphen,Phenazocine Hydrobromide,Hydrobromide, Phenazocine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

Y Itzhak, and J M Hiller, and E J Simon
March 2005, Journal of biochemistry,
Y Itzhak, and J M Hiller, and E J Simon
June 1994, The Journal of pharmacology and experimental therapeutics,
Y Itzhak, and J M Hiller, and E J Simon
November 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Y Itzhak, and J M Hiller, and E J Simon
January 1990, Journal of chemical neuroanatomy,
Y Itzhak, and J M Hiller, and E J Simon
December 1984, The Journal of pharmacology and experimental therapeutics,
Y Itzhak, and J M Hiller, and E J Simon
July 1980, Journal of neurochemistry,
Y Itzhak, and J M Hiller, and E J Simon
September 1995, European journal of pharmacology,
Copied contents to your clipboard!