The effect of ionic strength on the lipid peroxidation of porcine intestinal brush-border membrane vesicles. 1985

T Ohyashiki, and M Koshino, and A Ohta, and T Mohri

The effects of salt concentration gradient (inside to outside) on the lipid peroxidation of porcine intestinal brush-border membrane vesicles have been studied and several interesting features of the peroxidation have been elucidated. The addition of dithiothreitol and Fe2+ is far more effective in induction of the lipid peroxidation than any of the other metal ion species tested (Fe3+, Cu2+, Ni2+, Zn2+ and Cr3+). The peroxidation rate of the membrane vesicles induced by dithiothreitol plus Fe2+ was sensitive for the incubation temperature and was increased with increase of the temperature. Imposition of an inward salt concentration gradient on the membrane vesicles preloaded with 300 mM mannitol by addition of 100 mM chloride of K+, Na+, Li+, Rb+, NH4+ or choline to medium produces a very large reduction of the lipid peroxidation induced by dithiothreitol plus Fe2+. The membrane peroxidation is depressed more with the mannitol (300 mM)-preloaded vesicles than with the K2SO4 (100 mM)-preloaded vesicles when they are incubated in medium containing 20-100 mM of K2SO4. Addition of membrane-permeant anions such as SCN- and I-, but not addition of NO3-, to incubation medium has been found to decrease markedly the lipid peroxidation of the mannitol-preloaded vesicles. From these results it is suggested that the lipid peroxidation of the brush-border membranes by addition of dithiothreitol plus Fe2+ is sensitively changed with change in ionic strength.

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002083 Butylated Hydroxyanisole Mixture of 2- and 3-tert-butyl-4-methoxyphenols that is used as an antioxidant in foods, cosmetics, and pharmaceuticals. Butylhydroxyanisole,(1,1-Dimethylethyl)-4-methoxyphenol,AMIF-72,BHA,Butyl Methoxyphenol,Embanox,Nipantiox 1-F,Tenox BHA,AMIF 72,AMIF72,Hydroxyanisole, Butylated,Methoxyphenol, Butyl,Nipantiox 1 F,Nipantiox 1F
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium

Related Publications

T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
September 1989, Biochimica et biophysica acta,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
January 1993, Biological & pharmaceutical bulletin,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
June 1986, Biochimica et biophysica acta,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
February 1984, The American journal of physiology,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
June 1983, Biochimica et biophysica acta,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
April 1991, Gut,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
September 1985, The Journal of nutrition,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
January 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
August 1994, Journal of biochemistry,
T Ohyashiki, and M Koshino, and A Ohta, and T Mohri
April 1987, The American journal of physiology,
Copied contents to your clipboard!