Increased biosynthesis of pyruvate kinase under hypoxic conditions in mammalian cells. 1985

K A Ptashne, and M E Morin, and A Hance, and E D Robin

The rate of biosynthesis of pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) was compared in cells maintained under normoxic or hypoxic conditions. L8 cells (a myoblast cell line) were pulse-labeled with [3H]leucine and incorporation of radioactivity into pyruvate kinase was measured after quantitative affinity separation with anti-pyruvate kinase monoclonal antibody. During chronic hypoxia there is an increased rate of biosynthesis of pyruvate kinase leading to an increase in enzyme content and augmented glycolytic capacity. An inhibitor of the electron transport chain, antimycin A, was used to determine whether changes in pyruvate kinase content occurring during hypoxia are a result of reduction in molecular oxygen directly or an indirect consequence of oxygen depletion. Pyruvate kinase activity increased during chronic antimycin A exposure under normoxic conditions. The increase was quantitatively accounted for by an increase in cellular pyruvate kinase enzyme content. This suggested that decreases in the levels of molecular O2 are not the direct stimulus for the increased content of pyruvate kinase. It is more likely that the increased pyruvate kinase content results from depressed rates of electron transport through the mitochondrial electron transport chain.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D000968 Antimycin A An antibiotic substance produced by Streptomyces species. It inhibits mitochondrial respiration and may deplete cellular levels of ATP. Antimycin A1 has been used as a fungicide, insecticide, and miticide. (From Merck Index, 12th ed) Butanoic acid, 2(or 3)-methyl-, 3-((3-(formylamino)-2-hydroxybenzoyl)amino)-8-hexyl-2,6-dimethyl-4,9-dioxo-1,5-dioxonan-7-yl ester,Antimycin A1
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K A Ptashne, and M E Morin, and A Hance, and E D Robin
January 1978, International journal of radiation biology and related studies in physics, chemistry, and medicine,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
January 1977, Voprosy meditsinskoi khimii,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
September 2011, Radiation oncology (London, England),
K A Ptashne, and M E Morin, and A Hance, and E D Robin
January 2016, Biotechnology progress,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
July 2013, Journal of biochemical and molecular toxicology,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
May 1973, The Biochemical journal,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
March 1980, International journal of radiation biology and related studies in physics, chemistry, and medicine,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
September 1974, Journal of biochemistry,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
May 1968, Plant physiology,
K A Ptashne, and M E Morin, and A Hance, and E D Robin
January 2001, Zoology (Jena, Germany),
Copied contents to your clipboard!