Rapid method for isolation of normal human peripheral blood eosinophils on discontinuous Percoll gradients and comparison with neutrophils. 1985

R L Roberts, and J I Gallin

Previous studies on human eosinophils often have used cells from patients with hypereosinophilia syndrome or parasitosis owing to the difficulty in isolating pure populations of eosinophils from normal individuals. In the present study, human eosinophils were isolated with a purity of 97%, with 70% recovery from normal individuals with blood eosinophil counts of less than 3%. Human eosinophils are denser than neutrophils, but the range of densities of the two cell types overlap, making purification of eosinophils by density-gradient centrifugation difficult. However, if neutrophils were exposed to the chemotactic peptide (f-Met-Leu-Phe), which did not stimulate eosinophils, the neutrophils' density decreased, shifting them away from the density of eosinophils. Whole normal blood anticoagulated with EDTA was incubated at 37 degrees C for 15 minutes with 10(-6) mol/L f-Met-Leu-Phe and then layered over a discontinuous Percoll gradient (65% and 75% in diluted phosphate-buffered saline) and centrifuged at 400 g for 25 minutes at 22 degrees C. The cell layer between the 65% and 75% Percoll was collected and washed, and hypotonic lysis was used to remove erythrocytes. This cell layer contained 97.3 +/- 0.7% eosinophils (N = 8) with a yield of 4.9 X 10(4) eosinophils per milliliter of whole blood, or 70% of the total eosinophil count. The isolated eosinophils were in a quiescent state but responded to Escherichia coli endotoxin-activated serum with shape change and chemotaxis, membrane depolarization, and reduced nitroblue tetrazolium (96.0 +/- 1.0%), when stimulated with phorbol myristate acetate. In phagocytic assays, 89.3 +/- 1.3% of the eosinophils ingested Candida albicans v 96.0% +/- 1.0% of neutrophils. In contrast, the eosinophils did not respond chemotactically, alter membrane potential, or reduce nitroblue tetrazolium when treated with f-Met-Leu-Phe, and studies with f-Met-Leu-[3H]Phe showed that normal eosinophils lacked expression of receptors for f-Met-Leu-Phe. In control studies, normal eosinophils that were not exposed to f-Met-Leu-Phe during purification also failed to respond to f-Met-Leu-Phe, indicating intrinsic differences between normal eosinophils and neutrophils. Thus, exposure of whole blood to f-Met-Leu-Phe, followed by separation on Percoll is a simple method for rapid isolation of normal human eosinophils.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009580 Nitroblue Tetrazolium Colorless to yellow dye that is reducible to blue or black formazan crystals by certain cells; formerly used to distinguish between nonbacterial and bacterial diseases, the latter causing neutrophils to reduce the dye; used to confirm diagnosis of chronic granulomatous disease. Nitro-BT,Nitrotetrazolium Blue,Tetrazolium Nitroblue,Blue, Nitrotetrazolium,Nitroblue, Tetrazolium,Tetrazolium, Nitroblue
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D004804 Eosinophils Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin. Eosinophil

Related Publications

R L Roberts, and J I Gallin
January 1981, Journal of immunological methods,
R L Roberts, and J I Gallin
April 1986, Brain research,
R L Roberts, and J I Gallin
May 1995, BioTechniques,
R L Roberts, and J I Gallin
January 1981, Journal of immunological methods,
R L Roberts, and J I Gallin
May 1987, Research in veterinary science,
R L Roberts, and J I Gallin
April 1985, Plant physiology,
R L Roberts, and J I Gallin
October 1989, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
R L Roberts, and J I Gallin
October 1991, Fertility and sterility,
R L Roberts, and J I Gallin
January 1987, Biorheology,
R L Roberts, and J I Gallin
July 1991, Journal of neurochemistry,
Copied contents to your clipboard!