Differential inhibition of macrophage microbicidal activity by liposomes. 1985

M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer

In vitro culture of murine resident peritoneal macrophages with lymphokine (LK)-rich leukocyte culture fluids induces enhanced microbicidal activity against amastigotes of the protozoan parasite Leishmania tropica. Macrophages infected with Leishmania and treated with LKs after infection acquire the capacity to kill the intracellular parasite within 72 h. When compared with control macrophage cultures treated with medium lacking LKs, 80 to 90% fewer macrophages treated with LKs contained amastigotes. In experiments designed to test liposome delivery of LKs to infected macrophages, addition of multilamellar liposomes composed of phosphatidylcholine and phosphatidylserine (molar ratio, 7:3) completely abrogated LK-induced microbicidal activity. Liposomes containing only phosphatidylcholine were not inhibitory. Inhibition of LK activity by the liposomes occurred regardless of whether the liposomes contained LKs. Liposomal inhibition of activated macrophage effector activity was limited to intracellular killing; LK-induced macrophage extracellular cytolysis (i.e., tumor cytotoxicity) was not affected by liposome treatment. These data indicate that elucidation of the effects of liposome composition on acquired host defense mechanisms may be useful for the design of drug delivery systems that allow expression or augmentation of immunologically induced mechanisms for the intracellular destruction of infectious agents.

UI MeSH Term Description Entries
D007891 Leishmania A genus of flagellate protozoa comprising several species that are pathogenic for humans. Organisms of this genus have an amastigote and a promastigote stage in their life cycles. As a result of enzymatic studies this single genus has been divided into two subgenera: Leishmania leishmania and Leishmania viannia. Species within the Leishmania leishmania subgenus include: L. aethiopica, L. arabica, L. donovani, L. enrietti, L. gerbilli, L. hertigi, L. infantum, L. major, L. mexicana, and L. tropica. The following species are those that compose the Leishmania viannia subgenus: L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, and L. shawi. Leishmania (Leishmania),Leishmania (Viannia),Leishmania leishmania,Leishmania viannia,Leishmania leishmanias,Leishmania viannias,Leishmanias,Leishmanias (Leishmania),Leishmanias (Viannia),leishmanias, Leishmania,viannias, Leishmania
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
October 1995, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
November 2001, Current biology : CB,
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
June 1990, International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association,
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
July 1978, The Journal of experimental medicine,
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
January 1990, Agents and actions. Supplements,
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
January 1988, Journal of immunology (Baltimore, Md. : 1950),
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
August 1985, Journal of immunology (Baltimore, Md. : 1950),
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
July 1980, The Journal of experimental medicine,
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
December 2020, Cell reports,
M J Gilbreath, and G M Swartz, and C R Alving, and C A Nacy, and D L Hoover, and M S Meltzer
March 1993, Journal of vascular surgery,
Copied contents to your clipboard!