The relationship between binocular rivalry and strabismic suppression. 1985

E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White

Increment-threshold spectral sensitivity functions were determined for normal observers during binocular rivalry and for esotropic observers during strabismic suppression and under viewing conditions that normally induce binocular rivalry. Depending on the spatial and temporal properties of the test stimulus, the normal observers exhibited a wavelength-specific loss in sensitivity during the suppression phase of rivalry, which suggests that binocular rivalry differentially attenuates the sensitivity of the chromatic mechanisms relative to the luminance mechanisms. In contrast, regardless of the test stimulus dimensions, the esotropic observers did not manifest a wavelength-specific loss in sensitivity either during strabismic suppression or under conditions that normally induce binocular rivalry. The different patterns of suppression shown by the normal and esotropic subjects suggest that strabismic observers do not demonstrate normal binocular rivalry, and that strabismic suppression and normal binocular rivalry suppression are mediated by different neural mechanisms.

UI MeSH Term Description Entries
D008297 Male Males
D009799 Ocular Physiological Phenomena Processes and properties of the EYE as a whole or of any of its parts. Ocular Physiologic Processes,Ocular Physiological Processes,Ocular Physiology,Eye Physiology,Ocular Physiologic Process,Ocular Physiological Concepts,Ocular Physiological Phenomenon,Ocular Physiological Process,Physiology of the Eye,Physiology, Ocular,Visual Physiology,Concept, Ocular Physiological,Concepts, Ocular Physiological,Ocular Physiological Concept,Phenomena, Ocular Physiological,Phenomenon, Ocular Physiological,Physiologic Process, Ocular,Physiologic Processes, Ocular,Physiological Concept, Ocular,Physiological Concepts, Ocular,Physiological Process, Ocular,Physiological Processes, Ocular,Physiology, Eye,Physiology, Visual,Process, Ocular Physiologic,Process, Ocular Physiological,Processes, Ocular Physiologic,Processes, Ocular Physiological
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013285 Strabismus Misalignment of the visual axes of the eyes. In comitant strabismus the degree of ocular misalignment does not vary with the direction of gaze. In noncomitant strabismus the degree of misalignment varies depending on direction of gaze or which eye is fixating on the target. (Miller, Walsh & Hoyt's Clinical Neuro-Ophthalmology, 4th ed, p641) Concomitant Strabismus,Dissociated Horizontal Deviation,Dissociated Vertical Deviation,Heterophoria,Heterotropias,Hypertropia,Non-Concomitant Strabismus,Nonconcomitant Strabismus,Phorias,Squint,Strabismus, Comitant,Strabismus, Noncomitant,Convergent Comitant Strabismus,Mechanical Strabismus,Comitant Strabismus,Comitant Strabismus, Convergent,Deviation, Dissociated Horizontal,Dissociated Horizontal Deviations,Dissociated Vertical Deviations,Heterophorias,Heterotropia,Horizontal Deviation, Dissociated,Hypertropias,Non Concomitant Strabismus,Noncomitant Strabismus,Phoria,Strabismus, Concomitant,Strabismus, Convergent Comitant,Strabismus, Mechanical,Strabismus, Non-Concomitant,Strabismus, Nonconcomitant
D014785 Vision, Ocular The process in which light signals are transformed by the PHOTORECEPTOR CELLS into electrical signals which can then be transmitted to the brain. Vision,Light Signal Transduction, Visual,Ocular Vision,Visual Light Signal Transduction,Visual Phototransduction,Visual Transduction,Phototransduction, Visual,Transduction, Visual
D014792 Visual Acuity Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast. Acuities, Visual,Acuity, Visual,Visual Acuities
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field

Related Publications

E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
May 1972, Journal of experimental psychology,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
January 1979, Perception,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
June 2003, Vision research,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
January 2009, Attention, perception & psychophysics,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
December 1963, Vision research,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
September 2007, Psychology and aging,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
October 2009, Journal of vision,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
May 1979, Journal of experimental psychology. Human perception and performance,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
January 2017, Journal of vision,
E L Smith, and D M Levi, and R E Manny, and R S Harwerth, and J M White
January 2000, Perception,
Copied contents to your clipboard!