Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies. 1985

J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco

The ground substance of the intervertebral disc consists primarily of proteoglycans, which give the tissue its stiffness to compression and its resiliency. To investigate the structure and composition of these molecules, we extracted them from human infant nucleus pulposus under associative conditions and from human infant annulus fibrosus and cartilage end-plate under dissociative conditions. We examined the degree of aggregation, the composition, the electron microscopic appearance, and the dimensions of the proteoglycans of the intervertebral disc and compared their structure and dimensions with those of the proteoglycans from bovine hyaline cartilage. Aggregates represented 52 per cent of the proteoglycans of the nucleus pulposus between the ages of one and ten days but only 28 per cent between the ages of six and eight months. Preparations from the corresponding annuli contained 59 per cent aggregates at one to ten days and 47 per cent at six months. The corresponding cartilage end-plate preparations contained 45 and 40 per cent aggregates. The proteoglycans of the annulus fibrosus and cartilage end-plate contained more protein and less hexosamine than did those of the nucleus pulposus. Electron microscopy showed that approximately two-thirds of the aggregates from nucleus pulposus consisted of very short hyaluronate filaments with closely packed monomers. The other third had longer hyaluronate filaments and wider distances between monomers, and closely resembled the aggregates from the annulus fibrosus and cartilage end-plate. Aggregated monomers consisted of two segments: a thin segment connecting directly to the hyaluronic acid filament and a thick segment extending peripherally from the thin segment. The thin segment formed about 12 per cent of the total monomer length in the samples from all three disc tissues. The lower proportion of aggregated monomers, the lower protein content, and the smaller aggregates with closely packed monomers suggest that the nucleus pulposus may contain less link protein than do the annulus fibrosus and cartilage end-plate. Compared with proteoglycan aggregates from bovine hyaline cartilage, proteoglycan aggregates from human intervertebral disc were shorter and had fewer monomers and wider spacing between monomers. The aggregated monomers from the three components of the intervertebral disc had an average length of 209 +/- 90 nanometers, compared with 210 +/- 114 nanometers for monomers from hyaline cartilage of skeletally mature cows, 250 +/- 116 nanometers for monomers from hyaline cartilage of skeletally immature calves, and 288 +/- 108 nanometers for monomers from fetal animals.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007403 Intervertebral Disc Any of the 23 plates of fibrocartilage found between the bodies of adjacent VERTEBRAE. Disk, Intervertebral,Intervertebral Disk,Disc, Intervertebral,Discs, Intervertebral,Disks, Intervertebral,Intervertebral Discs,Intervertebral Disks
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D006595 Hexosamines AMINO SUGARS created by adding an amine group to a hexose sugar. Hexosamine
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo

Related Publications

J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
January 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
July 1983, The Journal of bone and joint surgery. American volume,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
March 1975, The Biochemical journal,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
January 1988, Electron microscopy reviews,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
December 1987, The Biochemical journal,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
June 1979, The Biochemical journal,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
May 2019, Connective tissue research,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
April 1985, Biochimica et biophysica acta,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
February 1972, Nihon Seikeigeka Gakkai zasshi,
J A Buckwalter, and A Pedrini-Mille, and V Pedrini, and C Tudisco
September 1972, The Biochemical journal,
Copied contents to your clipboard!