Adaptive regulatory control of System A transport activity in a kidney epithelial cell line (MDCK) and in a transformed variant (MDCK-T1). 1985

P Boerner, and M H Saier

Adaptive regulatory control of System A activity was investigated using MDCK cells and a chemically induced, oncogenic transformant of MDCK cells, MDCK-T1. Within 7 hours after transfer to an amino-acid-deficient medium, A activity of subconfluent MDCK cells had maximally derepressed, but this activity in confluent MDCK cells and in subconfluent transformed cells showed little capacity for derepression. Amino-acid-starved, subconfluent MDCK cells were used to study trans-inhibition and repression of A activity by individual amino acids. Trans-inhibition and repression were defined as the cycloheximide-insensitive and cycloheximide-sensitive components, respectively, of the total inhibition. Trans-inhibition correlated well with substrate affinity, but repression did not. Trans-inhibition and repression were further characterized using alpha-(methylamino) isobutyric acid (mAIB), a trans-inhibitor, and glutamate, an effective repressor. The apparent initial T 1/2 for inhibition by mAIB in the presence of cycloheximide was 0.5 hours, while that for repression by glutamate was 4.7 hours. Half-maximal inhibition by mAIB and repression by glutamate occurred at approximately 0.02 mM and 0.07 mM, respectively. Reversal of trans-inhibition by methionine occurred in the presence of cycloheximide within 1-4 hours after removal of methionine. The A system of the transformed MDCK-T1 cells showed elevated activity, little capacity for derepression, resistance to repression by amino acids, but retention of sensitivity to trans-inhibition. Kinetic analysis of mAIB uptake indicated that the A system of MDCK-T1 cells has become kinetically more complex in a manner which resembled amino-acid-starved rather than amino-acid-fed MDCK cells. These results suggest that the A system of MDCK-T1 cells has become resistant to adaptive regulatory control.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

P Boerner, and M H Saier
November 1997, Renal failure,
P Boerner, and M H Saier
March 1981, The American journal of physiology,
P Boerner, and M H Saier
March 1987, The Anatomical record,
P Boerner, and M H Saier
January 1979, Methods in enzymology,
P Boerner, and M H Saier
January 1983, Scandinavian journal of immunology,
P Boerner, and M H Saier
May 1982, The Journal of cell biology,
P Boerner, and M H Saier
September 1995, The Journal of pharmacology and experimental therapeutics,
P Boerner, and M H Saier
March 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!