Neutral amino acid transport in embryonal carcinoma cells. 1985

J S Zuzack, and R J Tasca, and S M DiZio

Neutral amino acid transport was characterized in the pluripotent embryonal carcinoma (EC) cell line, OC15. Ten of the thirteen amino acids tested are transported by all three of the major neutral amino acid transport systems--A, L, and ASC--although one system may make a barely measurable contribution in some cases. The characterization of N-methyl-aminoisobutyric acid (meAIB) transport points to this model amino acid as a definitive substrate for System A transport by OC15 cells. Thus, high concentrations of meAIB can be used selectively to block System A transport, and the transport characteristics of meAIB represent system A transport. Kinetic analysis of System A, with a Km = 0.79mM and Vmax = 14.4 nmol/mg protein/5 min, suggests a single-component transport system, which is sensitive to pH changes. While proline transport in most mammalian cells is largely accomplished through System A, it is about equally divided between Systems A and ASC in OC15 cells, and System A does not contribute at all to proline transport by F9 cells, an EC cell line with limited developmental potential. Kinetic analysis of System L transport, represented by Na+-independent leucine transport, reveals a high-affinity, single-component system. This transport system is relatively insensitive to pH changes and has a Km = 0.0031 mM and Vmax = 0.213 nmol/mg protein/min. The putative System L substrate, 2-aminobicyclo-[2,2,1]heptane-2-carboxylic acid (BCH), inhibits Systems A and ASC as well as System L in OC15 cells. Therefore, BCH cannot be used as a definitive substrate for System L in OC15 cells. Phenylalanine is primarily transported by Na+-dependent Systems A and ASC (83% Na+-dependent; 73% System ASC) in OC15 cells, while it is transported primarily by the Na+-independent System L in most other cell types, including early cleavage stage mouse embryos and F9 cells. We have also found this unusually strong Na+-dependency of phenylalanine transport in mouse uterine blastocysts (82% Na+-dependent). There is no evidence for System N transport by OC15 cells, since histidine is transported primarily by a Na+-independent, BCH-inhibitable mechanism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005260 Female Females
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

J S Zuzack, and R J Tasca, and S M DiZio
April 1977, The Journal of biological chemistry,
J S Zuzack, and R J Tasca, and S M DiZio
June 1981, The Journal of biological chemistry,
J S Zuzack, and R J Tasca, and S M DiZio
May 1983, Biochimica et biophysica acta,
J S Zuzack, and R J Tasca, and S M DiZio
October 1995, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J S Zuzack, and R J Tasca, and S M DiZio
June 1983, Biochimica et biophysica acta,
J S Zuzack, and R J Tasca, and S M DiZio
November 1970, Journal of bacteriology,
J S Zuzack, and R J Tasca, and S M DiZio
March 1983, Journal of neuropathology and experimental neurology,
J S Zuzack, and R J Tasca, and S M DiZio
September 1984, Mechanisms of ageing and development,
J S Zuzack, and R J Tasca, and S M DiZio
February 1999, The Journal of physiology,
J S Zuzack, and R J Tasca, and S M DiZio
March 1976, The Journal of physiology,
Copied contents to your clipboard!