Concanavalin A surface receptors and cytoplasmic actin in cell adhesion. 1979

B H Toh, and V B Randell, and S S Prime

A double immunofluorescence staining technique to locate concanavalin A (Con A) surface receptors and cytoplasmic actin in the same cell was applied to monolayer cultures of rat foetal fibroblasts during cell detachment induced by trypsin and during cell attachment to glass substratum. Con A receptors were demonstrated by fluorescein-isothiocyanate-labelled Con A (FITC-Con A) and actin by specific anti-actin antibody (AAA) traced with rhodamine-labelled goat anti-human globulin (R-AHG). Untreated, control cells had an elongated shape, Con A receptors restricted to cell margins and prominent actin filaments. After 2 min treatment with 0.001% trypsin the cells became angular with Con A receptors in clusters and actin in a diffuse or aggreagate staining pattern. Progressive cell rounding followed and this was accompanied by the development of long, thin, arborized cell processes, studded with Con A receptors and containing fine actin filaments. Complete cell rounding preceded cell detachment. The sites of detached cells were marked by fine aggregates containing Con A receptors and actin. In cells attaching to a glass substratum, actin was present in a diffusely stained or aggregate pattern in round cells, in filaments restricted to cell margins in partially spread cells and in numerous filaments in fully spread cells. Con A receptors were present in clusters in round cells, in clusters or caps in partially spread cells and in cell margins in fully spread cells. Binding of FITC-Con A to partially spread cells resulted in dissolution of the few, newly formed, actin filaments. We believe our observations are consistent with the idea that actin filaments, formed during cell attachment, contribute towards the maintenance of cell adhesion by helping in the preservation of cell shape and by anchorage of Con A receptors at points of cell attachment to the substratum.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011952 Receptors, Concanavalin A Glycoprotein moieties on the surfaces of cell membranes that bind concanavalin A selectively; the number and location of the sites depends on the type and condition of the cell. Concanavalin A Binding Sites,Concanavalin A Receptors,Concanavalin A Receptor,Receptor, Concanavalin A
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005898 Glass Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B H Toh, and V B Randell, and S S Prime
December 1994, Current opinion in structural biology,
B H Toh, and V B Randell, and S S Prime
October 1977, Nature,
B H Toh, and V B Randell, and S S Prime
June 1984, Biophysical journal,
B H Toh, and V B Randell, and S S Prime
January 1979, Cytobios,
B H Toh, and V B Randell, and S S Prime
June 1978, The Australian journal of experimental biology and medical science,
Copied contents to your clipboard!