Substrate-induced structural changes of the pyruvate dehydrogenase multienzyme complex. 1985

B Sümegi, and J Batke, and Z Porpáczy

The time course of the overall reaction catalyzed by the pyruvate dehydrogenase multienzyme complex produces an unexpectedly high lag (tau = 8 S) even in the presence of saturating concentrations of its substrates. The preincubation of the pyruvate dehydrogenase complex with one of the substrates alone decreases the duration of this lag, and all the substrates of the pyruvate dehydrogenase component (E1) and dihydrolipoyl transacetylase component (E2) together (pyruvate, thiamine pyrophosphate, and CoA) result in the complete disappearance of the lag. The reduction of the dihydrolipoyl dehydrogenase component (E3) of the pyruvate dehydrogenase complex with the substrates of the complex in the absence of NAD+ produces significantly different quenching in the FAD fluorescence, and then the reduction with the substrates of E3 as dihydrolipoic acid and dithioerythritol. (The formation of FADH2 was not observed in the system.) The higher fluorescence quenching in the presence of substrates of pyruvate dehydrogenase complex compared to the effect caused by the substrates of the E3 component (dihydrolipoic acid and DTE) indicates conformational changes additionally manifested in the fluorescence properties of the enzyme complex. The substrate-induced quenching of the enzyme-bound FAD fluorescence shows biphasic kinetics. The rate constant of the slow phase is comparable with the rate constant calculated from the time duration of the lag phase observed in the overall reaction. The kinetic analysis of both intensity and anisotropy decrease of the FAD fluorescence suggests a consecutive transmittance of an all substrate-coordinated, induced conformational changes directed from the pyruvate dehydrogenase-via the lipoyl transacetylase--to the lipoyl dehydrogenase. Two simultaneous conformational effects caused by binding of the substrates can be distinguished; one of them results the fluorescence of the bound FAD to be more quenched, while the other makes the FAD more mobile. The first-order rate constants of both these conformational changes were determined. The present observations suggest that the pyruvate dehydrogenase complex exists in a partially inactive state in the absence of its substrates, and it becomes active due to conformational changes caused by the binding of its substrates.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

B Sümegi, and J Batke, and Z Porpáczy
September 1975, Angewandte Chemie (International ed. in English),
B Sümegi, and J Batke, and Z Porpáczy
January 1993, Annual review of nutrition,
B Sümegi, and J Batke, and Z Porpáczy
November 2010, Archives of microbiology,
B Sümegi, and J Batke, and Z Porpáczy
May 1978, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
B Sümegi, and J Batke, and Z Porpáczy
January 2002, Biotechnology progress,
B Sümegi, and J Batke, and Z Porpáczy
March 1995, Journal of biochemistry,
B Sümegi, and J Batke, and Z Porpáczy
January 1970, Journal of electron microscopy,
B Sümegi, and J Batke, and Z Porpáczy
November 1991, Biochemical Society transactions,
B Sümegi, and J Batke, and Z Porpáczy
January 1985, The Biochemical journal,
Copied contents to your clipboard!