Pyruvate-dependent oxidative phosphorylation in erythroid and myeloid tumor mitochondria. 1985

S Abou-Khalil, and W H Abou-Khalil

The pyruvate-supported oxidative phosphorylation activity was determined in mitochondria isolated from the fast-growing erythroid and myeloid tumors of hematopoietic origin. Normal bone marrow and liver mitochondria were used for comparison. In the absence of primers, both tumor mitochondria exhibited a pyruvate-dependent respiratory state 4/state 3 transition, which was totally inhibited by either alpha-cyanocinnamate or arsenite. The transition rate increased in a concentration-dependent manner from 5 to 100 microM pyruvate, where the maximum activity was reached. Increasing the concentration to 500 microM and beyond, however, resulted in decreasing state 3 respiratory jump with little or no jump demonstrable at concentrations above 5 mM. Moreover, the addition of high concentrations of pyruvate during the respiratory state 3 caused a blockage of that state which was reestablished by the addition of succinate or alpha-ketoglutarate. These results clearly show the capacity of erythroid and myeloid tumor mitochondria to actively utilize low concentrations of pyruvate to support their oxidative phosphorylation activity. The reason for the absence of activity found with the high concentration, however, is not readily apparent.

UI MeSH Term Description Entries
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S Abou-Khalil, and W H Abou-Khalil
June 1962, Cancer research,
S Abou-Khalil, and W H Abou-Khalil
April 1980, Biochimica et biophysica acta,
S Abou-Khalil, and W H Abou-Khalil
January 1969, Annual review of biochemistry,
S Abou-Khalil, and W H Abou-Khalil
October 1959, Experientia,
S Abou-Khalil, and W H Abou-Khalil
May 1995, Biochimica et biophysica acta,
S Abou-Khalil, and W H Abou-Khalil
September 1976, Biochemical pharmacology,
S Abou-Khalil, and W H Abou-Khalil
October 1971, The Journal of cell biology,
S Abou-Khalil, and W H Abou-Khalil
September 1966, The Journal of endocrinology,
S Abou-Khalil, and W H Abou-Khalil
January 1991, Molekuliarnaia biologiia,
S Abou-Khalil, and W H Abou-Khalil
January 1953, Archives of biochemistry and biophysics,
Copied contents to your clipboard!