Ferritin in liver, plasma and bile of the iron-loaded rat. 1985

F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool

Rats were loaded with iron. With overload, up to a 10-fold increase of the iron and ferritin protein content of the livers was measured. The plasma ferritin concentration increased gradually with the ferritin concentration in the liver. The ferritin concentration in the bile increased also and was in the same range as in the plasma. The ratio plasma ferritin concentration to bile ferritin concentration in individual rats decreased in the case of considerable iron overload. After intravenous injection of liver ferritin, less than 2% of the ferritin concentration that disappeared from the blood was found to be in the bile. Isoelectric focussing revealed that the microheterogeneity of liver and bile ferritin were identical, but slightly different from plasma ferritin. These results indicate that ferritin was not solely leaking from the plasma to the bile. Together with ferritin, iron accumulated in the bile. The iron content of the bile ferritin was in the same range as in fully iron-loaded liver ferritin. It is likely that ferritin in the bile is excreted by the liver and consists of normal iron-loaded liver ferritin molecules. In all circumstances, the amount of iron in the bile was much higher than could be accounted for by transport by the bile ferritin. The ferritin protein to iron ratio in the bile was 0.1-1.2, which was in the same range as was measured in isolated lysosomal fractions of the liver. Those results agree with the supposition that ferritin and iron in the bile are excreted by the liver though lysosomal exocytosis.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D000410 Alanine Transaminase An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2. Alanine Aminotransferase,Glutamic-Pyruvic Transaminase,SGPT,Alanine-2-Oxoglutarate Aminotransferase,Glutamic-Alanine Transaminase,Alanine 2 Oxoglutarate Aminotransferase,Aminotransferase, Alanine,Aminotransferase, Alanine-2-Oxoglutarate,Glutamic Alanine Transaminase,Glutamic Pyruvic Transaminase,Transaminase, Alanine,Transaminase, Glutamic-Alanine,Transaminase, Glutamic-Pyruvic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
July 1977, The American journal of clinical nutrition,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
January 1988, Biology of metals,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
April 1980, Clinical science (London, England : 1979),
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
March 1978, The Journal of nutrition,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
January 1972, Seikagaku. The Journal of Japanese Biochemical Society,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
January 1984, FEBS letters,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
January 1984, Laboratory investigation; a journal of technical methods and pathology,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
January 1982, Progress in liver diseases,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
March 1999, Biochemical pharmacology,
F M Zuyderhoudt, and P Vos, and G G Jörning, and J Van Gool
April 1971, The American journal of physiology,
Copied contents to your clipboard!