Albumin-mediated changes in sperm sterol content during capacitation. 1985

K J Go, and D P Wolf

The role of albumin in mouse sperm capacitation was studied in relation to its activities as a lipid-solubilizing protein and a sterol acceptor. Two bovine serum albumins (BSA) which supported capacitation, Fraction V and fatty acid-free, both contained cholesterol and phospholipid but were without detectable levels of serum high-density lipoprotein (HDL). The lipid content of BSA could be reduced by trichloroacetic acid (TCA) precipitation; however, removal of all detectable lipids required precipitation with ethanolic acetone and diethyl ether extraction. In medium supplemented with Fraction V, fatty acid-free, or TCA-precipitated BSA, mouse sperm were capacitated as evidenced by their ability to fertilize eggs, concomitant with decreases in total cellular sterol and increases in phospholipid content. Delipidated BSA, fractionated on Sephadex G-100 in guanidine HCl also supported capacitation and mediated a 20% decrease in sperm sterol content, while cellular phospholipid levels remained unchanged. When BSA was modified by cholesterol augmentation, fertilization was inhibited in a cholesterol dose-dependent manner. These findings suggest that modulation of sperm lipid levels comprises an event of capacitation and that albumin mediates this process through its activity as a sterol acceptor.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008297 Male Males
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D013075 Sperm Capacitation The structural and functional changes by which SPERMATOZOA become capable of oocyte FERTILIZATION. It normally requires exposing the sperm to the female genital tract for a period of time to bring about increased SPERM MOTILITY and the ACROSOME REACTION before fertilization in the FALLOPIAN TUBES can take place. Capacitation of Spermatozoa,Capacitation, Sperm,Spermatozoa Capacitation
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K J Go, and D P Wolf
February 2010, Journal of proteome research,
K J Go, and D P Wolf
October 2020, Biology of reproduction,
K J Go, and D P Wolf
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
K J Go, and D P Wolf
May 1988, Journal of reproduction and fertility,
K J Go, and D P Wolf
February 2010, Journal of proteome research,
K J Go, and D P Wolf
August 1996, Molecular reproduction and development,
K J Go, and D P Wolf
December 2005, Human fertility (Cambridge, England),
K J Go, and D P Wolf
November 1990, Molecular reproduction and development,
K J Go, and D P Wolf
December 2009, Journal of reproductive immunology,
K J Go, and D P Wolf
November 1989, Biochemical and biophysical research communications,
Copied contents to your clipboard!