Human liver cells (Chang liver) were exposed to 5 micrograms Zn, 2.5 micrograms Cu or 1 microgram Cd/ml in cultured medium. These exogeneous heavy metals were accumulated by the cells and induced de novo synthesis of metallothionein after a 3-h incubation period. The production of Zn-, Cu- or Cd-thionein started in the cells with accumulation of 1 nmol Zn, 0.3 nmol Cu and 0.1 nmol Cd/mg cytosol protein and subsequently the amounts of metal-binding thioneins increased in agreement with the relative amount of metal accumulated in the cytosol over a 24-h period. When cells containing Zn- or Cu-thionein were placed in metal free medium, 70% or 25% of the zinc or copper bound to each original metallothionein was released after 3 h; bound metals decreased to 85% and 65% respectively after 24 h. The disappearance of metal from metallothionein correlated with increases of metal in the medium. On the other hand, 35S-counts incorporated into Zn- and Cu-thionein decreased only to 40% and 15% of the levels in the original metallothionein after 3 h; 35S-counts decreased to 65% and 45%, respectively, after 24 h, indicating that metals bound to metallothionein decreased more quickly than 35S-counts. These results suggest that metals were released from metallothionein and were excreted into the medium. However, 35S- and 109Cd-counts in Cd-thionein changed very little, if at all, in the cells even after a 24-h incubation period. Our data strongly suggest that Zn- and Cu-thionein are degraded in the cells, but that Cd-thionein remains longer than either Zn- or Cu-thionein. When cells containing Zn-thionein were incubated in metal-free medium, Zn-thionein was digested in the cells and peptide fragments ranging about 200-400 daltons were excreted from the cells.