Effect of osmolality on aldosterone secretion. 1985

E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor

The purpose of these experiments was to determine if the powerful effect of sodium chloride concentration on angiotensin II- and potassium-stimulated aldosterone secretion by isolated perfused adrenal glands is mediated by the sodium or chloride ion or by the obligatory change in osmolality. We used isolated Ringer's bicarbonate perfused canine adrenal gland preparations to determine the effects of a variety of isosmotic, hyperosmotic, and hyposmotic solutions on angiotensin II- and potassium-stimulated aldosterone secretion. When we increased the osmolality of the perfusion medium (8-10 mosmol) by the addition of NaCl, sucrose, mannitol, or glucose, angiotensin II-stimulated aldosterone secretion was inhibited to a similar extent, whereas urea addition had no effect. Similarly, when we increased the osmolality of the perfusion medium (8-10 mosmol) by the addition of NaCl, sucrose, or mannitol, potassium-stimulated aldosterone secretion was also inhibited to a similar extent. In contrast to the increase in angiotensin II- and potassium-stimulated aldosterone secretion observed during hyposmotic reductions in NaCl concentration, (addition of sucrose) did not increase angiotensin II- or potassium-stimulated aldosterone secretion. Even the marked increase in aldosterone secretion caused by large hyposmotic reduction in NaCl concentration did not occur with an equivalent isosmotic reduction in NaCl concentration. These results clearly demonstrate that changes in NaCl concentration affect aldosterone secretion by a mechanism sensitive to the osmolality. Moreover, since hyperosmolality caused by urea addition had no effect on angiotensin II-stimulated aldosterone secretion, changes in intracellular volume or composition appear to be an important modulator of aldosterone secretion.

UI MeSH Term Description Entries
D008297 Male Males
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000450 Aldosterone A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. Aldosterone, (+-)-Isomer,Aldosterone, (11 beta,17 alpha)-Isomer
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
January 1992, The American journal of physiology,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
February 1986, British journal of clinical pharmacology,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
November 1956, Helvetica medica acta,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
January 1995, The American journal of physiology,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
November 1956, Lancet (London, England),
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
October 1992, Psychoneuroendocrinology,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
July 1981, Pediatric research,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
August 1969, Endocrinology,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
January 1969, Surgical forum,
E G Schneider, and K J Radke, and D A Ulderich, and R E Taylor
November 1996, Endocrinology,
Copied contents to your clipboard!