Histone H5 promotes the association of condensed chromatin fragments to give pseudo-higher-order structures. 1985

J O Thomas, and C Rees, and E C Pearson

We describe two distinct situations in which chicken erythrocyte chromatin fragments associate in solution. The erythrocyte-specific histone H5 is implicated since chromatins that do not contain H5 do not show this behaviour. Well-defined oligomers of between approximately 6 and approximately 18 nucleosomes prepared at low ionic strength condense and associate when the ionic strength is raised to 75 mM, forming pseudo-higher-order structures. The associated forms, probably predominantly dimers, are stabilized by migration of about 10% of the H5, and of the minor lysine-rich histone H1, from the non-associated forms, probably reflecting the preference of H5 for higher-order structures observed previously [Thomas, J. O. and Rees, C. (1983) Eur. J. Biochem. 134, 109-115]. Since the final (H1 + H5) content of the aggregate at 75 mM is never higher than that of the fragment prepared at low ionic strength, migration is probably to a small proportion of sites that have inevitably become vacant due to handling losses at the higher (but not at low) ionic strength. H5 thus maximizes its interactions in the condensed state of chromatin and even maintains the association of two or more fragments without continuity of the DNA. Aggregates of oligomers larger than about 18 nucleosomes may be too long to withstand hydrodynamic shear forces in the absence of such continuity. During nuclease digestion of nuclear chromatin, H5 and, to a lesser extent, H1, are released from the ends of very short fragments and bind to larger oligomers of various sizes leading to heterogeneous aggregates that survive exposure to low ionic strength. These aggregates, in contrast to those described above, have up to 60% more H5 and 20% more H1 than chromatin prepared at low ionic strength. Whether the excess H5 and H1 bind non-specifically or to a second low-affinity binding site on each nucleosome is not known. The associated forms described above (1) are well defined and potentially useful for structural studies, whereas the other aggregates (2) seem less likely to be directly relevant to the native structure of chromatin.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J O Thomas, and C Rees, and E C Pearson
October 1988, Journal of molecular biology,
J O Thomas, and C Rees, and E C Pearson
June 1994, The Journal of biological chemistry,
J O Thomas, and C Rees, and E C Pearson
November 1988, The Journal of biological chemistry,
J O Thomas, and C Rees, and E C Pearson
January 1997, Critical reviews in eukaryotic gene expression,
J O Thomas, and C Rees, and E C Pearson
January 1983, The International journal of biochemistry,
J O Thomas, and C Rees, and E C Pearson
June 1984, Journal of molecular biology,
J O Thomas, and C Rees, and E C Pearson
July 1979, European journal of biochemistry,
J O Thomas, and C Rees, and E C Pearson
January 1984, Journal of cell science. Supplement,
J O Thomas, and C Rees, and E C Pearson
June 2017, Zeitschrift fur medizinische Physik,
Copied contents to your clipboard!