Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger. 1985

B F Kase, and I Björkhem, and P Hågå, and J I Pedersen

Based on in vitro work with rat liver, we recently suggested that the peroxisomal fraction is most important for the oxidation of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) into cholic acid. The cerebro-hepato-renal syndrome of Zellweger is a fatal recessive autosomal disorder, the most characteristic histological feature of which is a virtual absence of peroxisomes in liver and kidneys. This disease offers a unique opportunity to evaluate the relative importance of peroxisomes in bile acid biosynthesis. A child with Zellweger syndrome was studied in the present work. In accordance with previous work, there was a considerable accumulation of THCA, 3 alpha, 7 alpha, 12 alpha, 24-tetrahydroxy-5 beta-cholestanoic acid (24-OH-THCA), 3 alpha, 7 alpha, 12 alpha-trihydroxy-27-carboxymethyl-5 beta-cholestan-26-oic acid (C29-dicarboxylic acid), and 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid in serum. In addition, a tetrahydroxylated 5 beta-cholestanoic acid with all the hydroxyl groups in the steroid nucleus was found. 3H-Labeled 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol was administered intravenously together with 14C-labeled cholic acid. There was a rapid incorporation of 3H in THCA and a slow incorporation into cholic acid. The specific radioactivity of 3H in THCA was about one magnitude higher than that in cholic acid. The conversion was evaluated by following the increasing ratio between 3H and 14C in biliary cholic acid. The rate of incorporation of 3H in cholic acid was considerably less than previously reported in experiments with healthy subjects, and the maximal conversion of the triol into cholic acid was only 15-20%. About the same rate of conversion was found after oral administration of 3H-THCA. Both in the experiment with 3H-5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol and with 3H-THCA, there was an efficient incorporation of 3H in the above unidentified tetrahydroxylated 5 beta-cholestanoic acid. There was only slow incorporation of radioactivity into 24-OH-THCA and into the C29-dicarboxylic acid. From the specific activity decay curve of 14C in cholic acid obtained after intravenous injection of 14C-cholic acid, the pool size of cholic acid was calculated to be 24 mg/m2 and the daily production rate to 9 mg/m2 per d. This corresponds to a reduction of approximately 85 and 90%, respectively, when compared with normal infants. It is concluded that liver peroxisomes are essential in the normal conversion of THCA to cholic acid. In the Zellweger syndrome this conversion is defective and as a consequence the accumulated THCA is either excreted as such or transformed into other metabolites by hydroxylation or side chain elongation. The accumulation of THCA, as well as the similar rate of conversion of 5 beta-cholestane-3 alpha,7 alpha.12 alpha-triol and THCA into cholic acid, support the contention that the 26-hydroxylase pathway with intermediate formation of THCA is the most important pathway for formation of cholic acid in man.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007674 Kidney Diseases Pathological processes of the KIDNEY or its component tissues. Disease, Kidney,Diseases, Kidney,Kidney Disease
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008107 Liver Diseases Pathological processes of the LIVER. Liver Dysfunction,Disease, Liver,Diseases, Liver,Dysfunction, Liver,Dysfunctions, Liver,Liver Disease,Liver Dysfunctions
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001646 Bile An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum. Biliary Sludge,Sludge, Biliary
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile

Related Publications

B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
December 1987, Developmental medicine and child neurology,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
November 1974, Orvosi hetilap,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
January 1987, Journal belge de radiologie,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
March 1970, American journal of diseases of children (1960),
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
February 1975, Orvosi hetilap,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
January 2007, Neurology India,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
August 1983, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
October 1999, Archives of pediatrics & adolescent medicine,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
April 1984, European journal of pediatrics,
B F Kase, and I Björkhem, and P Hågå, and J I Pedersen
February 1974, Lancet (London, England),
Copied contents to your clipboard!